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AIMagazine and the conference series on Innovative
Applications of AI (IAAI) have had a close rela-
tionship ever since the latter's inception 1989. This

close relationship between AI Magazine and IAAI is no coin-
cidence.  Much of our society knows about and interacts
with AI mainly through its applications. Applications are the
source of many problems that AI research seeks to address,
and we often measure our progress through successful appli-
cations. Applications are how AI makes an impact on the
world. Hence, as “the journal of record for the AI communi-
ty,” it is only logical for AI Magazine to cover AI applications
extensively. Thus, every year since 1990, AI Magazine typi-
cally has published a special issue based on the previous
year's IAAI conference. The articles in this special issue
derive from IAAI 2016, and I thank Peter Yeh and James
Crawford for putting it together. 

I should note another feature of the articles in this special
issue on AI applications: they contain few mathematical for-
malisms and equations. This too is by design. At AI Maga-
zine, we are incrementally moving towards expository arti-
cles that are accessible to the broader AI community. It is
important that the AI community at large has access to seri-
ous AI research but in a language it can understand. I thank
the authors of the articles in this issue for their cooperation
in going through a second round of reviewing to make the
articles more explanatory and less “technical” and yet main-
tain high quality. As we move forward, we will continue the
move towards descriptive articles accessible to the AI com-
munity at large.

Copyright © 2017, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602
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AAAI’s Innovative Applications of Artificial Intelligence
Conference was founded in 1989 to showcase the suc-
cessful application of artificial intelligence technology

to real-world problems and its deployment into the hands
of end users. Since then, we have seen examples of AI
applied to domains as varied as medicine, education, manu-
facturing, transportation, user modeling, military opera-
tions, and citizen science. This year, the 2016 conference
continued the tradition with a selection of deployed appli-
cations describing systems in use by their intended end
users, emerging applications describing works in progress,
and challenge problem papers that discuss associated
research and development challenges in applying artificial
intelligence to real-world problems.

Our first article is based on the IAAI-16 Robert S. Engel-
more Memorial Lecture given by Reid G. Smith at AAAI/IAAI
2016 in honor of Bob Engelmore’s extraordinary service to
AAAI and his contributions to applied AI. The article Smith
and coauthor Joshua Eckroth later wrote is titled Building AI
Applications: Yesterday, Today, and Tomorrow. It focuses on
changes in the world of computing over the last three
decades that made building AI applications more feasible.
The article also examines lessons learned during this time
(drawing from experiences that have been documented in
IAAI conference proceedings since 1989), and distills these
lessons into succinct advice for future application builders.

In the second article, PAWS — A Deployed Game-Theo-
retic Application to Combat Poaching, Fei Fang, Thanh H.
Nguyen, Rob Pickles, Wai Y. Lam, Gopalasamy R. Clements,
Bo An, Amandeep Singh, Brian C. Schwedock, Milind
Tambe, and Andrew Lemieux describe a deployed game-the-
oretic application for optimizing foot patrols to combat
poaching in Southeast Asia. The authors report on signifi-
cant evolution of PAWS from a proposed decision aid to a
regularly deployed application over the last two years. Key
technical advances that led to PAWS’s regular deployment

Copyright © 2017, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Editorial Introduction to the Special Articles in the Spring Issue

Innovative Applications of 
Artificial Intelligence 2016

Peter Z. Yeh and James Crawford

n This issue features expanded versions of
articles selected from the 2016 AAAI Confer-
ence on Innovative Applications of Artificial
Intelligence held in Phoenix, Arizona. We
present a selection of three articles that
describe deployed applications, two articles
that discuss work on emerging applications,
and an article based on the 2016 Robert S.
Engelmore Memorial Lecture. 



authors’ work is conducted in the con-
text of an industrial application in the
communication domain with the goal
to eventually deploy the emerging
application to test a complete product
line of conferencing systems in contin-
uous delivery mode. Initial experimen-
tal evaluations show promising results.

In the tradition of previous special
issues on innovative applications of arti-
ficial intelligence, and consistent with
the goals of the IAAI conference, the arti-
cles in this issue describe work that is
strongly grounded in the needs of end
users. We hope that you enjoy the arti-
cles, and that they both provide insight
into the application development
process and help to expand your view of
what is possible with AI technology. We
also invite you to submit a description of
your next AI application to IAAI.

Peter Z. Yeh is a senior manager of AI tech-
nology and senior principal scientist at
Nuance Communications. His research
interests lie at the intersection of semantic
technologies, data and web mining, and nat-
ural language understanding. At Nuance,
Yeh’s research focuses on developing the
next generation of intelligent virtual assis-
tants and the underlying AI technologies
necessary to enable this. Prior to joining
Nuance, he was a research lead at Accenture
Technology Labs where he was responsible
for investigating and applying AI technolo-
 gies to various enterprise problems ranging
from data management to advanced analyt-
ics. Yeh is the author of more than 40 papers
in peer-reviewed journals and conferences,
and holds eight patents. He received his
Ph.D. in computer science from the Univer-
sity of Texas at Austin.

James Crawford is the founder and chief
executive officer at Orbital Insight, Inc. He
has held distinguished positions at NASA, led
startups, and in 2009 became engineering
director for Google Books in charge of scan-
ning the world’s books. Crawford served as
vice president of engineering and executive
vice president of engineering at Composite
Software, Inc. He served at Ames Research
Center, NASA’s center of excellence for infor-
mation technology. Prior to joining NASA, he
led the optimization team at i2 Technologies,
worked at AT&T Bell Laboratories, and
cofounded the Computational Intelligence
Research Laboratory (CIRL) at the University
of Oregon. Crawford is the author of more
than 15 papers in referred journals and con-
ferences, and holds five patents. He earned
his Ph.D. in artificial intelligence and mas-
ter’s degree in computer science from the
University of Texas at Austin.
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ity on ergonomics and powertrain
assembly. Hence, the existing KL-ONE
ontology needs to be reengineered into
a semantic web OWL/RDF ontology to
satisfy the increased scope of the AI
system and to enable other applica-
tions within Ford to easily make use of
it as well. 

In our fifth article, Automated Volu-
metric Intravascular Plaque Classifica-
tion Using Optical Coherence Tomog-
raphy, Ronny Shalev, Daisuke Na -
ka mura, Setsu Nishino, Andrew M.
Rollins, Hiram G. Bezerra, David L.
Wilson, and Soumya Ray describe an
emerging application to identify differ-
ent plaque types in blood vessel images
using machine-learning methods. An
estimated 17.5 million people died
from a cardiovascular disease in 2012,
and most acute coronary events result
from rupture of the protective fibrous
cap overlying an atherosclerotic
plaque. Hence, early identification of
plaque types that can potentially rup-
ture is of great importance. The state-
of-the-art approach to imaging blood
vessels is intravascular optical coher-
ence tomography (IVOCT), but this is
an offline approach where the images
are first collected and then manually
analyzed one image at a time to identi-
fy regions at risk. This process is
extremely laborious, time consuming,
and error prone. Initial empirical
results presented by the authors using
real OCT data show that the proposed
approach can identify different plaque
types efficiently and with high accura-
cy across multiple patients.

In our sixth article, Using Global
Constraints to Automate Regression
Testing, Arnaud Gotlieb and Dusica
Marijan describe an emerging applica-
tion to automate regression testing.
Regression testing is a crucial verifica-
tion step in the software development
and release process, but the selection
of test cases is challenging due to sev-
eral factors such the limited time avail-
able for testing. This problem, called
test suite reduction (TSR), is usually
addressed by validation engineers
through manual analysis or by using
approximation techniques. To address
these limitations, the authors apply AI
techniques such as constraint pro-
gramming and global constraints to
automate the process. Moreover, the

are outlined. These advances include
incorporating complex topographic
features, handling uncertainties in
species distribution, handling complex
patrol scheduling constraints, and
more. The authors also report key les-
sons learned ranging from the impor-
tance of firsthand immersion in the
security environment of concern to
minimizing the need for extra equip-
ment in order to further ease future
deployments of PAWS. The benefit of
PAWS to its intended end users was
demonstrated by the continued
deployment of PAWS at existing sites
in Malaysia, and steps taken at the
time of writing to expand PAWS to
additional sites.

In our third article, Deploying
nEmesis: Preventing Foodborne Illness
by Data Mining Social Media, Adam
Sadilek, Henry Kautz, Laren DiPrete,
Brian Labus, Eric Portman, Jack Teitel,
and Vincent Silenzio describe a
deployed application that automatical-
ly detects venues likely to pose a pub-
lic health hazard by applying machine-
learning techniques to Twitter data.
The authors demonstrate nEmesis’s
efficacy in the Las Vegas metropolitan
area in a double-blind experiment con-
ducted over three months in collabo-
ration with Nevada’s health depart-
ment, and show that the deployed
application is 64 percent more effec-
tive at identifying problematic venues
than the current state of the art. If ful-
ly deployed, the nEmesis approach
could prevent more than 9000 cases of
foodborne illness and 557 hospitaliza-
tions annually in Las Vegas alone. 

In our fourth article, Ontology
Reengineering: A Case Study from the
Automotive Industry, Nestor Rychty-
ckyj, Venkatesh Raman, Baskaran
Sankaranarayanan, P. Sreenivasa Ku -
mar, and Deepak Khemani discuss an
effort to reengineer an existing ontol-
ogy deployed at Ford. Ford has been
utilizing an AI-based system to manage
process planning for vehicle assembly
at its assembly plants around the world
for more than 25 years. The knowledge
about Ford’s processes is contained in
an ontology originally developed using
the KL-ONE representation language
and methodology. However, the scope
of this AI system has increased over the
years to include additional functional-
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AI Applications of Yesterday and Today
As with the AAAI itself, the Innovative Applications of Artifi-
cial Intelligence conference (IAAI) was the brainchild of Raj
Reddy. Howie Shrobe summarized the context: “... the emer-
gence of scientific achievements had triggered opportunities
to tackle new problems ... The point of the conference was to
exchange information about what really works and what the
real problems are. The goal was to lead to better technology,
to find and remedy current deficiencies, and to solve real
problems” (Shrobe 1996).

In the preface to the proceedings of the first IAAI confer-
ence in 1989, Herb Schorr, program chair, made some inter-
esting comments about the 1989 state of several of the AI
technologies that are now well established (Schorr and Rap-
paport 1989):

Copyright © 2017, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Robert S. Engelmore Award Article

Building AI Applications: 
Yesterday, Today, and Tomorrow

Reid G. Smith, Joshua Eckroth

� AI applications have been deployed
and used for industrial, government,
and consumer purposes for many years.
The experiences have been documented
in IAAI conference proceedings since
1989. Over the years, the breadth of
applications has expanded many times
over and AI systems have become more
commonplace. Indeed, AI has recently
become a focal point in the industrial
and consumer consciousness. This arti-
cle focuses on changes in the world of
computing over the last three decades
that made building AI applications
more feasible. We then examine lessons
learned during this time and distill
these lessons into succinct advice for
future application builders. 
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Expert Systems: “Nearly all [applications] are expert sys-
tems because it is in this form that AI is most rapidly
coming into widespread use.”

Robotics: “[N]o robot software system for complex
tasks is commercially available ... robots seem to be
stuck with their early applications and have made
small commercial progress in the last few years.”

Neural Networks: “[W]e know of no neural networks in
practical day-to-day use ... while this technology
appears to possess vast potential ... we leave it for this
book’s successor to cover such applications.”

Natural Language Processing (NLP): “[NLP] has been
constrained historically by limitations of computa-
tional power, but the fantastic progression of compu-
tational cost/performance has eliminated this bottle-
neck. ... [But] today’s applications ... are very limited
and very few low-level natural language functions are
being deployed.”

Expert systems were common and successful in the
late 1980s in large part because they were able to
incorporate domain- and task-specific knowledge;
their reasoning engines were relatively simple and,
consequently, these systems could be deployed on
computer hardware available at the time.

Herb Schorr’s comments about robotics, neural
networks, and NLP are prescient. In fact, in each area,
the story has completely flipped since 1989: today,
robots are common in industrial and service applica-
tions such as factory automation and farming, and
their deployment continues to grow; neural networks
make up significant portions of vision, speech, and
text-processing systems, and deep learning is one of
the more popular research and application areas in
AI today; and natural language processing can be
found in many applications that billions of people

use every day, such as search engines, personal assis-
tants, and web-connected speakers.

Today, AI is everywhere. By contrast with 1989,
when very few AI companies were in existence, today
many companies, from early stage startups to mature
enterprises, are developing AI applications (Zilis
2015).

The world of AI apps is very different as well. In the
early days, AI was viewed with suspicion in industry
as only the latest hype. Today, AI apps are all around
us. Indeed, AI and machine learning are expected in
almost every app.

Many, perhaps most, large organizations are mak-
ing use of AI technologies for market forecasting, cus-
tomer support, recruiting, fraud detection, scheduling
and planning, and other uses. Con sumer-oriented
examples of AI include Google’s search engine, self-
driving cars, and Google Now; Apple’s Siri (Cheyer
2014); Microsoft’s Cortana and Bing; Amazon’s Echo;
Facebook’s automatic photo tagging; Netflix’s movie
recommendations; and automated check deposits
using one of many mobile banking applications.
Table 1 shows even more problem and system types,
plus specific applications, several of which have been
presented at IAAI or AAAI over the years. Of course,
not all of these examples are commonly recognized as
AI applications — the AI features have disappeared
into the fabric. Modern search engines are a good
example of this phenomenon.

Although interest in computer science in general
dropped after the dot-com crash of the early 2000s
(Thibodeau 2008), the last few years have seen a
steady growth in the number of news stories about
AI appearing in popular media, as discovered by
AAAI’s automated AI in the News weekly news bot
(Eckroth et al. 2012). Figure 1 shows this trend. Com-

Table 1. AI in Use.

Problems and System Types 

Rule-Based Systems: Widely applied base technology  

Credit Card Fraud Alert  

Insurance  

Scheduling: Maintenance, Crew, Gate  

Video Games  

Search Engines  

Augmented/Virtual Reality  

Photo Face Recognition  

Handwriting Recognition: Mail Sorting, ATM-Checks 

Translation  

Deep Learning  

Robotics 

Specific Applications 

TurboTax  

Netflix Recommender 

FareCast, Google Flights, Kayak price predictor 

Narrative Science GameChanger 

IBM Watson 

Dragon Speech Recognition 

Amazon Robotics / Kiva Systems 

Roomba 

Kinect 

Driver-Assist / Self-Driving Vehicles 

Siri, Cortana, Amazon Echo 
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puter science undergraduate enrollments have exhib-
ited a similar trend, and as of 2014, more Ph.D. grad-
uates are employed in the field of AI, across academe
and industry, than any other subfield of computer
science (Zweben and Bizot 2015).

We believe there are several factors contributing to
the growth since the first IAAI conference in 1989.

Moore’s Law
One of the most important changes is the growth in
hardware performance. To illustrate, we will consid-
er a deployed system from the first IAAI conference.
Clancy, Gerald, and Arnold (1989) developed an
expert system that “assisted attorneys and paralegals
in the closing process for commercial real estate
mortgage loans.” Their system was required to work
on IBM PCs with Intel 80286 processors and 640 KB
memory. They wrote that the PC’s limited memory
posed a “critical technical consideration” and they
programmed their system to swap subsets of the
knowledge base in and out of memory during nor-
mal operation. Their solution, and more arcane
memory management techniques, are likely familiar
to AI system builders who were active in the early
days. 

Today, consumer hardware is 2500 times faster
(from 1.5 million instructions per second, or MIPS,
on an 80286 compared to 3783 MIPS on an Intel i7-
3770K, quad core).1 It is now common to find more
powerful servers, with more than 10 cores, which
means that we can take advantage of a speed-up of
10,000 — and growing.

In addition, consumer hardware contains 25,000
times as much memory (640 KB to 16 GB), and
50,000 times the disk capacity (40 MB to 2 TB). (See

also Preshing [2012].) This explosive growth of com-
puting power can be attributed to Moore’s law, which
summarizes Gordon Moore’s observation that the
number of transistors in integrated circuits doubles
approximately every two years. The diversity of inte-
grated circuits has also grown, resulting in general-
purpose GPUs (with multiteraflop performance; that
is, trillions of floating-point operations per second)
that have helped usher in the era of practical
machine learning.

The Internet
The global impact of the Internet on science and
society in general cannot be overstated. One of the
more interesting effects of the Internet, and the web
in particular, on AI systems was noted in Halevy,
Norvig, and Pereira’s (2009) article The Unreasonable
Effectiveness of Data. They note that the web enables
easy acquisition of massive amounts of data from bil-
lions of web pages, provided by billions of users. 

Halevy and colleagues further argue that sophisti-
cated knowledge representation and reasoning sys-
tems may be unnecessary, even detrimental when a
massive corpus such as the web is available. For
example, in the case of the semantic web, they sug-
gest that writing an ontology, adding metadata
markup for web pages, and building a complex rea-
soning system is likely to be more expensive and
error prone than simply querying the vast, unstruc-
tured corpus with shallow parsing and straightfor-
ward statistical analysis. The long tail of real-world
concepts defeats any effort to develop a grand mod-
el of everyday reasoning, but the long tail is well rep-
resented in massive data sets such as the web.

Open Source Software
Frustrated with a trend toward proprietary develop-
ment practices at the Massachusetts Institute of Tech-
nology (MIT), Richard Stallman started the GNU
Project in 1983 to create a free and open source
UNIX-like operating system. The idea spread and has
been harnessed by various groups, resulting in an
abundance of high-quality open source software. The
internet played a large role in the distribution and
development of open source software. In particular,
development of the Linux operating system, which
was built with GNU project tools, grew rapidly in the
1990s due to the availability of newsgroups, email,
and file sharing. As of November 2015, 99 percent of
the 500 most powerful supercomputers in the world
run the open source Linux operating system. Most
software development environments in use today are
open source (Oracle’s JVM, Microsoft’s .Net, C/C++
compilers, Python, and others), and many open
source libraries and toolkits are available for AI-spe-
cific tasks, a sampling of which are shown in table 2.

Machine Learning
Because available hardware did not allow large-scale

Figure 1. Count of News Stories Found 
by AI in the News for Each Week.

The line visualizes a linear regression.
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Table 2. Sample Open Source AI libraries and Toolkits.

TensorFlow (Google) Machine learning toolkit 

OpenCV (itseez) Computer vision library 

Sphinx (CMU) Speech recognition toolkit 

Drools (Red Hat) Rule-driven expert system shell, planning engine  

GATE (University of Sheffield) Natural language processing toolkit 
Robot Operating System (Open Source Robotics 
Foundation) 

Platform for integrating various algorithms and libraries 
related to robotics 

Figure 2. Google Trends Rankings for Various Search Terms. 

The y-axis represents smoothed relative interest.
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numeric computation, early AI systems relied on
heuristics encoded symbolically, even in data-heavy
tasks such as computer vision. Though significant
progress continues to be made in symbolic reason-
ing, it is clear that the power available to process vast
amounts of data — even at high data rates — has
enabled practical deployment of machine-learning
techniques and resulted in a wide diversity of suc-
cessful applications from speech recognition and face
recognition to self-driving cars. Additionally, it is
interesting to note that machine learning seems to
dominate the popular perspective of AI today, just as
it was considered by early AI researchers to be an
essential component of intelligence (Minsky 1961).

We find evidence of this in Google Trends data,
shown in figure 2. Interest in AI appeared to wane
after the dot-com crash and hit a low around 2009.
The search term computer science follows a similar
trend. Recently, interest has renewed and appears to
be supported by machine learning and recent work
in deep learning.

Reduced Business Risk
These points add up to another change. Because of
the greater computing power and more readily avail-
able data sets and software, today there is less need to
build massive technology platforms. Hence, it is
cheaper to build AI systems. More effort can be spent
on solving specific business problems, thereby reduc-
ing the risk associated with artificial intelligence.

Compared to 1989, today it is orders of magnitude
easier to integrate AI systems into a company’s over-
all IT portfolio. The reasons include: modern AI sys-
tems utilize standard hardware and software (in
many cases); they integrate more easily into existing
architectures; the iterative development process pio-
neered in AI projects has become common across IT;
and, the success of high-profile AI systems such as
Watson and Siri means that most people know that
AI can work in the real world. (The authors thank
Neil Jacobstein for this insight.)

Distributions and Trends 
from the IAAI Conferences
At the outset, IAAI included only applications that
had been deployed; that is, for which there was expe-
rience based on actual use, and for which payoff
could be estimated. In 1997, an emerging applica-
tions track was added to bridge the gap between AI
research and AI application development. The goal
was to support information sharing among
researchers and system builders: researchers could see
which techniques proved fruitful in deployed appli-
cations, and builders could learn of emerging tech-
niques that had yet to be proven in the field but
showed promise.

An analysis of the topics covered by IAAI articles is
shown in figures 3 and 4. This analysis is provided by
i2k Connect (i2kconnect.com), whose goal is help
organizations find, filter, and analyze unstructured

http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=9&exitLink=http%3A%2F%2Fi2kconnect.com


data by transformation into structured data. The plat-
form automatically tags documents with accurate
and consistent metadata, guided and enriched by
subject matter expertise. The figures show data from
deployed applications only — 316 of them. The fig-
ures include only 15 of a long tail of more than 100
industry and technology topics that have been cov-
ered in IAAI. Figure 3 also excludes information tech-
nology applications, that is, AI applied to our own
business, which would otherwise be number one. 

Another way of analyzing IAAI topics over the
years is shown in figure 5. The figure shows that the
technology mix has evolved. Expert systems clearly
dominated the early days of IAAI. Machine learning
is notably absent early on. Over time, however, the
mixture has become more diverse, with no topic
clearly dominating in recent conferences. We note
that it is not the case that expert systems died.
Rather, after a few years, they became more standard

practice than innovation. Fewer papers were pub-
lished about novel applications of expert systems.
They disappeared into the fabric, now applied every-
where, from the high-end emulation of rare human
experts, to the embedding and application of rule
books and procedure manuals. However, we will like-
ly see more hybrid machine-learning technologies
that can automatically update their reasoning
engines as the application data change over time.

Some technologies have not been represented
much at IAAI, like speech understanding and robots.
They do appear, just not in the top 15. In the recent
2016 deployed papers track, four technologies are
applied: spatial reasoning, crowdsourcing, machine
learning, and ontologies. We also note that there have
been two papers on deep learning, one in 2015 and
one in 2016, neither documenting a deployed appli-
cation. Some of this may be due to self-selection in
that our data are limited to IAAI conferences, which
may not accurately reflect how often these technolo-
gies are utilized in the overall application world.

In our final analysis of IAAI articles, figure 6 shows
a quick overview of the top concepts mentioned over
the years. The analysis was done with a modified
form of the C-value/NC-value method (Frantzi, Ana-
niadou, and Mima 2000), which extracts significant
concept names found in text, as opposed to just the
most frequently used phrases. Note that there may be
some temporal bias in this analysis due to the data
set reflecting the past decades of IAAI papers, versus
trends in the most recent papers.

High-Impact AI Applications
Many of the past IAAI program chairs and cochairs
and AAAI Fellows kindly responded to a request for
their views on what have been the high-impact appli-
cations, including some that opened up a new area,
presented at IAAI conferences over the years.

Because we have selected high-impact applications
and it takes time to establish whether an application
has had high impact, some of the examples may look
a bit dated. Note, however, that in several cases, a
recent update has been presented at IAAI.

A few of the applications that were singled out by
several respondents as being high impact are sum-
marized in the following.

1983: Process Diagnosis System (PDS) 
The Process Diagnosis System (Fox, Lowenfeld, and
Kleinosky 1983) started out as an expert system shell.
It has been in active use and continuous development
since 1985. 1985! Though the origin of PDS predates
IAAI, it serves as an early example of deployed AI. It
started with a presentation by Mark Fox at Westing-
house. Over the 30-year period, Westinghouse sold
the business to Siemens, where it is now at the heart
of their Power Diagnostics Center that performs cen-
tralized rule-based monitoring of over 1200 gas tur-
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Figure 3. Top 15 Industry Topics in IAAI Articles, 1989–2016.
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Figure 4. Top 15 Technology Topics in IAAI Articles, 1989–2016.
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bines, steam turbines, and generators. Ed Thompson
and Ben Bassford celebrated the 30th anniversary of
the system with the IAAI community when they pre-
sented an update at the 2015 conference in Austin
(Thompson et al. 2015). Their paper summarizes the
many changes that have been incorporated into the
system over its lifetime, to deal with change in
requirements, the customer business organization,
and underlying computer technologies.

1989: Authorizer’s Assistant
A knowledge-based credit-authorization system for
American Express, the Authorizer’s Assistant
(Dzierzanowski et al. 1989) was the forerunner of
now standard credit card transaction analysis. It cre-
ated a capability that we all take for granted today —
and complain about every time we are called to veri-
fy a charge — until at least we ourselves are the vic-
tims of fraud.

Expansion, improvement, and testing were
planned from the start to ensure consistency as the
knowledge base changed as well as ensure general
system performance. The team found that consisten-
cy, audit tracking, and evaluation were key to accept-
ance and return on investment (ROI). They observed,
“the [Authorizer’s Assistant] proved to be better than
all but the most expert credit card authorizers ... and
that translated directly into huge ROI.” The system’s
internal expert system incorporated 890 rules and ran
on rack-mounted Symbolics Lisp machines connect-
ed to an IBM mainframe.

Phil Klahr generously provided these retrospective
insights.

1989: Applications of Artificial Intelligence
to Space Shuttle Mission Control
This NASA application originated in the Mission
Control Center for STS-26 as a rule-based real-time

Figure 5. Mix of Technologies Deployed and Emerging in IAAI Articles, 1989–2016. 

The dominant technologies include expert systems, machine learning, agents, natural language, and statistical learning, and are included
in the figure legend.
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Integrated Communications Officer (INCO) expert
system (Muratore et al. 1989). The system monitored
space shuttle telemetry data and advised flight con-
trollers on fault detection and diagnosis. It provided
fault identification and diagnosis before the tradi-
tional INCO console could update the parameters of
the faulty unit.

The system made use of the C Language Integrat-
ed Production System (CLIPS) Expert System Shell,
now available as open source software.2 It was also
the first of more than 30 NASA applications reported
to date at IAAI and, as is well known, AI systems lat-
er flew in space — and navigated autonomously on
the moon and Mars.

The next two applications are intelligent assistants
that played in center ring from first deployment.
Both have been presented twice at IAAI — covering
initial deployment and a 10-year update.

1989 and 1999: Ford Motor Company
Direct Labor Management System 
The Direct Labor Management System is integrated
into Ford’s Global Study Process Allocation System
(GSPAS) (O’Brien et al. 1989, Rychtyckyj 1999). Its

purpose is the automatic generation of work instruc-
tions for vehicle assembly, with associated times. It
does so by analyzing high-level structured English
descriptions. The system is also able to make accu-
rate estimates of direct versus indirect labor time and
to plan for mix/volume changes and line balancing.
It has become an integral part of Ford’s assembly
process planning business.

The natural language component in this applica-
tion was one of the few from the early days. The sys-
tem was implemented on the NIKL/KL-ONE (Woods
and Schmolze 1992) knowledge representation mod-
el — one of the first such applications.

Over the years, the system has undergone several
knowledge base upgrades and ports to different plat-
forms to keep the system viable and up to date
through various organizational and business practice
changes. It was later called the Global Study Process
Allocation System.

1995: The FinCEN Artificial Intelligence
System and 1999: The NASD Regulation
Advanced-Detection System (ADS)
Created to identify potential money laundering from
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Figure 6. Top Concepts Mentioned in IAAI Papers, 1989–2016.
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reports of large cash transactions, the FinCEN Artifi-
cial Intelligence System (FAIS) used link diagrams to
support detection of money laundering (Senator et
al. 1995). ADS: NASD Regulation Advanced-Detec-
tion System (Kirkland et al. 1999) used temporal
sequences to support detection of securities fraud.
Their different domains of use dictated different
knowledge representations.

FAIS links and evaluates reports of large cash trans-
actions. To give an idea of the money involved, fin-
cen.gov reported suspicious transactions totaling
approximately $28 billion in October 2015. The FAIS
key idea is “connecting the dots” — thus link dia-
grams, now commonplace in social network analy-
sis, was an appropriate choice. The appropriate rep-
resentation choice in FAIS enabled a reporting app
based on the original detection system. This was an
unanticipated bonus.

ADS monitors trades and quotations in the Nasdaq
Stock Market, to identify suspicious patterns and
practices. In this application, temporal sequences are
key — not so much links as in FAIS — so a represen-
tation that supports them was a good choice.

2005 and 2014: Engineering Works 
Scheduling for Hong Kong’s Rail Network 
The Hong Kong rail network moves 5 million pas-
sengers a day through the city’s rapid transit subway,
airport express, and commuter rail lines. The AI
application streamlines the planning, scheduling,
and rescheduling process and provides automatic
detection of potential conflicts as work requests are
entered; verification that no conflicts exist in any
approved work schedules before execution; genera-
tion and optimization of weekly operational sched-
ules; automatic update to repair schedules after
changes; and generation of quarterly schedules for
planning (Chun et al. 2005, Chun and Suen 2014).

To be successful, the system must coordinate with
the staff members who carry out the scheduled work.
To this end, the developers found that the system
must be able to explain the schedules it creates. As a
result, they veered away from the original genetic
algorithms approach toward heuristic search. A
recent report about this system appeared in New Sci-
entist (Hodson 2014).

1994 and 2004: Plastics 
Color Formulation Tool
Since 1994, GE Plastics (later SABIC) has employed a
case-based reasoning (CBR) tool that determines col-
or formulas that match requested colors (Cheetham
2004). FormTool has saved millions of dollars in pro-
ductivity and material (that is, colorant) costs. It is
the basis for the online color-selection service called
ColorXpress Services.

Determining the colorants and loading levels that
can be added so the plastic matches a given color is a
difficult problem for multiple reasons. For example,

there is no accurate method to predict the color pro-
duced when a set of colorants is added to plastic.
Unlike paint, where light primarily reflects off the
surface, in plastics a significant percentage of light
penetrates the surface and reacts with the internal
structure to produce a color that depends on both the
internal structure and the lighting conditions (natur-
al sunlight versus fluorescent lighting).

The AI system used case-based reasoning to replace
programs that used prohibitively expensive exhaus-
tive search to determine the colorant-loading pro-
portions for a color formula that matches a cus-
tomer’s desired color.

1995: Scheduling of 
Port of Singapore Authority
This expert system (Weng et al. 1995) is responsible
for assisting with planning and management of all
operations of the Port of Singapore Authority. With
hundreds of vessels calling at Singapore every day, a
fast and efficient allocation of marine resources to
assist the vessels in navigating in the port waters is
essential. Manual planning using pen and paper was
erroneous, uncoordinated, and slow in coping with
the rapid increase in the vessel traffic. Included in the
purview of the application is scheduling the move-
ment of vessels through channels to terminals,
deploying pilots to tugs and launches, allocating
berths and anchorages to ships, and planning
stowage of containers. 

To generate accurate, executable deployment
schedules, the automated scheduler requires real-
time feedback from the resources on their job status,
any estimated delays, and end times of their jobs.
This is achieved by integrating the system with the
port’s mobile radio data terminal system.

2006: Expressive Commerce 
and Its Application to Sourcing
This application has produced one of the largest ROI
figures of any system thus far reported at IAAI. Orig-
inally CombineNet, later renamed SciQuest, it
improves procurement decisions for spend categories
that are typically beyond the capabilities of tradi-
tional eSourcing software. Even in the early days of
2006, it had already handled $35 billion in auctions
and delivered $4.4 billion in savings to customers
through lower sourcing costs (Sandholm 2007).

The challenge in developing an expressive com-
merce system is handling the combinatorial explo-
sion of possible allocations of businesses to suppliers.
Their key development is a sophisticated tree search
algorithm. Much has been written about this algo-
rithm (refer to Sandholm [2007] for a list of articles),
though some of its details are kept proprietary.

2014: CiteSeerX 
CiteSeerX (Wu et al. 2014) is a database and search
engine for more than 4 million research articles from

http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=13&exitLink=http%3A%2F%2Ffincen.gov
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=13&exitLink=http%3A%2F%2Ffincen.gov


various disciplines. Starting in 1997 as CiteSeer, the
service was the first to extract and index citations
from documents automatically. Today, it is also capa-
ble of extracting metadata from individual para-
graphs and sentences as well as tables and figures.
The metadata and the original documents are made
freely available for researchers who work on
advanced information-retrieval algorithms.

The CiteSeerX service is accessed 2 million times
per day and an average of 10 articles are downloaded
per second. The size of the document database (after
deduplication) has grown significantly over the
years, from 500,000 in 2008 (when CiteSeerX
debuted) to nearly 3 million in 2013. Today, between
50,000 and 100,000 PDFs are analyzed per day.

CiteSeerX’s implementation makes use of several
AI components, including document classification,
duplicate detection, metadata extraction, author
name disambiguation, and search indexing. The
researchers’ 25 years of experience is documented
(Wu et al. 2014) and serves as a showcase of the vari-
ety of AI techniques available, for example, rule
engines, neural networks, probabilistic graphical
models, and the importance of choosing the Appro-
priate technique.

Lessons Learned
As the story of developing, implementing, and

upgrading applications has unfolded, so has the con-
ventional wisdom about building successful AI appli-
cations. 

The Power Is in the Knowledge ... But 
Manual Knowledge Acquisition Is Hard
The first lesson learned by builders of early AI systems
is that “the power is in the knowledge.” By 1989,
thanks to the pioneering efforts of Ed Feigenbaum,
Bruce Buchanan, and many others, we understood
that domain-specific knowledge (chemistry, medi-
cine, and others) and task-specific knowledge (tur-
bine maintenance, plant scheduling, and others) are
more important for high performance and accurate
reasoning than general problem-solving approaches.

But manual knowledge acquisition is hard and
takes a long time. In the past, we called this the
“knowledge acquisition bottleneck.” Furthermore,
ongoing knowledge base maintenance and curation
are essential. Knowledge is perishable — everything
changes over the lifetime of an application: the
domain evolves, new use cases arise, new experts
arrive with different knowledge, new data sets
become available, the technology advances, and so
on. If system builders are engaged in manual knowl-
edge acquisition, then they will also need an army of
people to keep the knowledge base up to date. There-
fore, they need a lot of revenue (hence, a lot of users)
to support that effort. Due to the difficulty of knowl-
edge acquisition and maintenance, many systems fell

by the wayside, even if they were excellent at one
time. For example, the field of medicine is too large
and changes too rapidly for manual knowledge
acquisition (Myers, Pople, and Miller 1982).

Today, knowledge comes in a variety of forms. Ear-
ly knowledge systems made use of symbolic rules
that encoded experts’ knowledge because such rules
are compact, they are representationally adequate for
many tasks and domains, and low-powered
machines (by today’s standards) are sufficient to per-
form the required inference procedures. However,
rule-based expert systems are not effective for “big
data” problems such as visual object recognition (for
example, faces) and speech recognition. Progress in
neural networks and deep learning, in particular,
probabilistic graphical models and other machine-
learning (ML) techniques, has greatly expanded the
reach of AI systems. Yet, systems that use machine
learning still use knowledge. Rather than expert-
defined rules, ML systems make use of knowledge in
several forms: training data including procedures for
their acquisition and preprocessing, feature selection,
model selection, and various parameters found by
experimentation. It has been said, “there is no such
thing as a free lunch,” and in AI and ML, there is no
such thing as free knowledge. There is no escape from
the need to maintain and curate knowledge and data,
even if some aspects are automated by machine
learning.

Knowledge Representation Matters
The structure of knowledge in the system has a large
impact on the system’s reasoning capabilities and
performance. The pioneers taught us that selecting
the appropriate representation has a big impact, for
five reasons: adequacy, efficiency, flexibility, main-
tainability, and explainability.

Adequacy
As John McCarthy and his colleagues stated, a system
cannot reason about what it cannot represent
(McCarthy 1960, 1981). Davis, Schrobe, and
Szolovits (1993) referred to a knowledge representa-
tion as a “surrogate” for real-world entities. An ade-
quate surrogate has a “correspondence” with real-
world entities and these correspondences have high
“fidelity,” that is, they closely match the relevant
characteristics of the real-world entities. 

Efficiency
Every programmer knows that representations, or
data structures, can have an impact on efficiency. For
example, linked lists do not support quick random
access while arrays do not support quick addition or
deletion of elements. Similar trade-offs characterize
knowledge representations. In general, the more sim-
plistic the representation, the more efficient the rea-
soning algorithms. For example, reasoning over
propositional logical is often quite efficient, while
few tools exist that are capable of efficiently and reli-
ably reasoning over first-order logic with types (Sut-
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cliffe and Pelletier 2016). Likewise, nearest neighbor
classification procedures require virtually no training
while neural networks typically require significant
training. During inference, however, a naïve nearest
neighbor algorithm (for example, linear lookup) will
likely be significantly slower than a neural network.

Flexibility
A good knowledge representation will support
growth in the knowledge base that was not antici-
pated during initial knowledge acquisition. Addi-
tionally, long-running systems must be capable of
evolving over time as the customer changes and the
context in which the system was initially deployed
migrates to other contexts and use cases. A good
knowledge representation will be able to represent
new knowledge concepts and adapt existing ones
without significant updates to the representation or
reasoning algorithms. The American Authorizer’s
Assistant, the FinCEN system, and the ADS systems
are all good examples of this lesson in action. 

In summarizing 10 years of work on Mycin,
Buchanan and Shortliffe (1984) attributed the success
of the program to flexibility — in the rule-based rep-
resentation that allowed rapid modification and in
the reasoning that allowed reaching reasonable con-
clusions with imperfect or missing information.

Maintainability
It is helpful if the knowledge representation can be
understood and modified by subject matter experts,
who may not be (and typically are not) experts in
computer programming and knowledge representa-
tion. Ideally, software engineers will not need to be
called in whenever the knowledge base needs an
update. As John McCarthy noted, declarative repre-
sentations are more learnable and maintainable than
procedural ones (McCarthy 1960). The reason is that
declarative representations are better separated from
internal conventions of the reasoning algorithms,
thus allowing subject matter experts to focus on the
knowledge being represented. 

Today, it is particularly important for subject matter
experts to be able to interpret and modify the results
of machine-learning systems that are driven primarily
by raw data and empirical validation. They may, for
example, suggest that there are critical data sets miss-
ing that would improve the analysis, and avoid simply
handing the problem over to data scientists.

Explainability
In organizations, the AI system encodes and repre-
sents the decision criteria of the management. Thus,
when the AI system suggests a decision, it should be
able to explain that decision to the user so that the
user (and the management) can “own it and be able to
defend it” in terms of the organization’s decision cri-
teria. Explanation may be unnecessary if the algo-
rithm makes money, for example, Wall Street trading.
But in many other contexts, without an explanation
system, organizational and user acceptance of AI
applications is more challenging. This has been under-

stood since SHRLDU in the Blocks World (Winograd
1972), and Mycin, in the knowledge-intensive world
of medicine (Buchanan and Shortliffe 1984).

Explainability is more problematic in the case of
noninterpretable models such as neural networks, in
which it is not at all clear exactly what knowledge has
been stored as a result of training.

Lately, there has been some discussion in the press
about “algorithmic accountability” (Diakopoulos
2013, Lohr 2015), and several companies are pursu-
ing explanation as a differentiator, for example, Wat-
son Paths and the Narrative Science extension for the
Qlik visual analytics tool (Hammond 2015). 

Separate the Knowledge Base 
and the Inference Engine
As a corollary of the maintainability of declarative
representations, the pioneers also taught us that it is
a good idea to separate the knowledge base and the
inference engine because a separate knowledge base
is easier to change, update, debug, and explain. Rec-
ognizing the importance of separation, from a knowl-
edge representation and a knowledge delivery per-
spective, many people have devoted their time to the
development of expert system shells (for example,
M1, S1, ART and CLIPS), knowledge representation
languages (for example, KL-ONE and OWL), ontol-
ogy editors (for example, Protégé), and general-pur-
pose machine-learning models.

Successful Applications 
Incorporate a Variety of Techniques
Successful AI applications incorporate a wide range of
techniques, strategies, and knowledge, embodying
rules, objects, ontologies, statistics, and signal pro-
cessing to name a few. Self-driving cars are an obvious
example. Their capabilities include modeling, simu-
lation, sensing, motion planning, object recognition,
obstacle avoidance, machine learning, error recovery,
and so on. The learnings have been reported multiple
times at AAAI (Montemerlo et al. 2006, Thrun 2006)
and IAAI (Urmson et al. 2009). 

Modern text-analytics systems also illustrate the
point. For example, the i2k Connect platform uses a
variety of knowledge and AI techniques to perform
document reading and enrichment. It uses ontologies
to represent domain-specific knowledge about, for
example, the oil and gas industry, the field of artificial
intelligence, and topics related to supply-chain man-
agement and health care. Document text and meta-
data are extracted using machine-learning methods.
Visual and language rules are used to extract the doc-
ument’s title and summary. Documents are then ana-
lyzed with a variety of rules in order to identify the
domain-specific topics that the document is about.
Multiple technologies from AI and elsewhere are
needed for this processing pipeline.

A combination of various kinds of knowledge and
techniques should be expected in any large-scale AI



application that is required to integrate multiple
sources and types of information. The architecture of
such an AI application should make such integration
feasible by, for example, separating different process-
ing tasks into distinct modules and supporting a com-
mon interface for communication among the compo-
nents. The Robot Operating System3 is a paradigmatic
example of such an architecture. Different robots may
have vastly different components and purposes, yet
ROS offers high-level abstractions that enable various
sensors, actuators, and algorithms to communicate
using a common language.

AI Applications Must Integrate
into Existing Work Flows

Perhaps the most important lesson learned by AI sys-
tem builders is that success depends on integrating
into existing workflows — the human context of
actual use. It is rare to replace an existing work flow
completely. Thus, the application must play nicely
with the other tools that people use. Put another way,
ease of use delivered by the human interface is the
“license to operate.” Unless designers get that part
right, people may not ever see the AI power under the
hood; they will have already walked away. 

As AI systems began to function well enough that
they were able to play in the center ring, so to speak,
risk mitigation, project management, and budgetary
control became more important. The systems were
no longer in a “research” or “proof of concept”
phase. In other words, standard IT rules — and con-
sumer mobile app acceptance rules — apply. Many AI
practitioners have made these points in the context
of AI applications in particular. But the rules are valid
for all applications of information technology.

In the early days, we talked as if AI systems had a
big box of AI — the important stuff — and a small
box of all that other messy IT stuff. We quickly
learned that in real-world systems, it was mostly the
other way around. The AI was a piece of the puzzle,
and sometimes not a very big piece. 

Consider the Dipmeter Advisor (Smith and Baker
1983), started at Schlumberger in the early 1980s and
based on the knowledge of the legendary oil finder,
Al Gilreath, shown in figure 7. The Dipmeter Advisor
demonstrated the challenges of infrastructure: getting
the data from the field systems was a bigger problem
than originally anticipated; and the challenges of
technology transfer: nontraditional hardware (D-
Machines) and software (Interlisp-D) became major
stumbling blocks, though without these technologies
Schlumberger would have had no system at all. 

The amount of effort that had to be devoted to the
non-AI components was dominant. The user inter-
face accounted for almost half the code. The rule
engine and knowledge base accounted for 30 percent.
Of course, lines of code do not necessarily tell the
whole story, but the numbers are consistent with the
development effort expended. Much of the coding

effort went into the interactive graphics system, not
the AI. For some clients, interactive graphics was the
most important element.

Security and privacy have become increasingly
crucial over time, and the application’s performance
characteristics in the deployed setting must meet
industry or consumer expectations. 

Additionally, change management is unavoidable
(Hiatt 2006). But the amount of change management
required is inversely proportional to the power of the
new technology. It is also directly proportional to the
amount of change in existing work flows required to
adopt it. 

Convincing people to make substantial changes to
their existing work flows to take advantage of a new
technology that isn’t much better than the old tech-
nology requires a great deal of change management
effort. On the other hand, convincing people to
make small changes to their existing work flows to
take advantage of new technology that is an order of
magnitude better than the old technology requires
only modest change management effort.

As Mehmet Goker put it in a private communica-
tion to the authors: “Applications with a small and
flexible core that solve a real-world problem have the
biggest impact and are the easiest to put into the work-
place.”

To summarize, in any large organization, standard
IT rules apply and the AI application should fit into the
broader IT infrastructure to ensure successful adoption.
Management, end user, and IT support and participa-
tion are essential. Budget approval will be challenging
without business unit management support, deploy-
ment into a company’s existing infrastructure is not
possible without support from the IT organization, and
adoption is unlikely without continuous end-user par-
ticipation in system development. 

In the real world of applications, our experience
also suggests that the dichotomy suggested by
Markoff (2015) between artificial intelligence and
intelligence augmentation or amplification does not
exist. They are two ends of a spectrum that meet in
most applications. The successful systems enable
people to do what people do best and use computers
to do what computers do best. 

A Way Around the Knowledge 
Acquisition Bottleneck

Machine learning offers a way around the knowl-
edge acquisition bottleneck ... but success depends
on human insight folded into the methods, like the
choice of features.

One thing has not changed over the history of
IAAI. It is still very hard to build, curate, and main-
tain large knowledge bases by hand. The manual
knowledge-acquisition bottleneck is still firmly in
place.

Aside: This is a special case of a larger point. Manual
information governance is not sustainable. Very few
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humans have the passion and consistency to tag and
manage their own unstructured data ... look at your
own hard drive or your organization’s file shares if you
doubt it. This is one of the main reasons why so much
unstructured corporate data is “lost in the cloud.” It
may be there, but you are likely to struggle to find it if
you didn’t write it yourself. More than half of employ-
ees in companies surveyed worldwide express deep
dissatisfaction with the findability of corporate infor-
mation.4 In contrast to Internet content, today it is
rare to see search engine optimization applied to
intranet content.

But now armed with billions of crowdsourced
examples from the web, we have learned that data-
driven, statistical methods are “unreasonably effec-
tive” in several domains. The statistics bring the abil-
ity to deal with noise and to cover problems where
humans either have difficulty explaining how they
do it, or where they don’t do it very well in the first
place.

The bottom line is that machine learning is a way
around the knowledge-acquisition bottleneck in a
surprisingly broad number of domains, but two
caveats are worth considering:

Howie Shrobe made an observation that rings true. “...

when you look closer at successful statistical approach-
es, a lot of the success is in the choice of features to
attend to or other similar ways of conveying human
insight to the technique ...” (private communication).
Indeed, mitigating this problem is a focus of some
research on deep learning algorithms — to learn fea-
ture representations from unlabeled data.5

There is a very long tail on the types of problems
encountered in the world. Developers will not have
millions of examples for all of them. In those cases,
some kind of reasoning is essential; for example, from
basic principles captured via case-based reasoning or
encoded in a rule-based system.

Apps Can Be Built with Components
That Reason from Different Starting Points.

In the early days of expert systems running on
machines with relatively little processing power and
memory, the standard starting point for delivering
domain and task-specific knowledge can be charac-
terized by labels like slow, cognition, search, top-down,
model-driven.

Today, armed with the compute power, data, and
machine-learning algorithms now available to us, we
are much better equipped to build apps that reason

Figure 7. The Dipmeter Advisor System.



from a starting point characterized by labels like fast,
recognition, look-up, bottom-up, data-driven.

For example, Fast versus Slow. The focus of Daniel
Kahneman’s 2011 book is a dichotomy between
these two modes of thought: “fast, instinctive, and
emotional” and “slow, more deliberative, and more
logical” (Kahneman 2011). 

Alternatively, Herb Simon put it this way: “The sit-
uation has provided a cue; this cue has given the
expert access to information stored in memory, and
the information provides the answer. Intuition is
nothing more and nothing less than recognition.”
(Simon 1992). Fast corresponds to recognition. Slow
corresponds to cognition or search. In this regard, com-
pare the recognition approach of the human chess
master to the search approach of Deep Blue (Camp-
bell, Hoane, and Hsu 1999). (Because of this, a typi-
cal grandmaster does six orders of magnitude less
search per move than Deep Blue did.)

Another example, well known to American foot-
ball fans, is that of the Manning brothers, Peyton and
Eli. It has been widely reported that their father
Archie started the boys learning football and quar-
terbacking at the earliest possible age. This maxi-
mized the time they had to store millions of the small
chunks of recognition knowledge, later buttressed by
countless hours spent studying game film.

Rod Brooks championed what he called a new
approach to artificial intelligence and robot design —
which can be called “bottom-up” — as an alternative
to the “top-down” model-driven approach of the pio-
neers (Brooks 1991).

Today, some authors seem to see a conflict between
“data-driven” (new think) systems and “model-dri-
ven” (old think) systems as if the “good” applications
today are all data driven and work well, in contrast
with the “bad” model-driven applications of the old
days that didn’t work well. 

Many AI apps have combined reasoning from
opposite starting points, going way back to the early
days. The Hearsay II speech-understanding system
combined top-down and bottom-up processing
(Erman et al. 1980). Mycin used backward and for-
ward rule chaining (Buchanan and Shortliffe 1984).
And the Dipmeter Advisor was both data driven, con-
verting raw signals to patterns, and model driven,
using rules to classify stratigraphic and tectonic fea-
tures from the patterns (Smith and Baker 1983).
Overall accuracy depended on the contributions of
all the components — data driven and model driven.

We also don’t accept the criticism that the early AI
community was too focused on model-driven
approaches when it should have been focused on
data-driven approaches. We believe the pioneers were
doing the best they could with the machines and
data available to them. They were forced into cogni-
tive approaches in some cases (for example, vision)
because they had to do something to finesse the need
for orders of magnitude more processing power, stor-

age, and sensors than were available to them in the
day.

The good news these days is that all the compo-
nents are substantially more powerful, thanks to the
computing and data revolutions. We are not restrict-
ed to either a “fast” or a “slow” starting point. We
can have both. 

That said, it is important for developers to give due
consideration to the new possibilities offered by the
substantial increases in processor speed and memo-
ry available today — and to not implicitly be stuck in
the “slow” thinking mind set of the early days.
Going forward, there is the possibility of storing mas-
sively larger knowledge bases that are composed of
small chunks of very specific domain and task
knowledge, retrieved by fast recognition processes
(more of what Simon was referring to). 

Thus, a knowledge base for a domain would have
powerful rules (as in the past, thousands of them)
plus these small chunks of very specific experiential
knowledge (millions of them). With modern sensors,
the small chunks may be very easy to capture. Cer-
tainly, there will be things missing that might have
been implied by rules (that is, not everything possi-
ble is actually observed and remembered as a chunk).
But overall, knowledge acquisition will have become
far easier to do and cheaper. These “hybrid” knowl-
edge base architectures will dominate in applica-
tions. This also seems like a fruitful avenue for recon-
sidering older models of human cognition. (The
authors thank Ed Feigenbaum for this observation.)

Checklist for Tomorrow’s 
Application Builders

Our examination of nearly 30 IAAI conferences, our
personal experiences, and stories related to us by col-
leagues and friends, lead to the checklist in table 3.
We briefly explain each entry in the following.

As will be apparent to experienced application
developers, much of this advice mirrors general soft-
ware engineering best practice. But some of the
points are even more important for AI systems. We
invite your feedback and your own lessons learned. 

Select Problems with a Solid Business Case
Successful IT applications in general start with a focus
on the business case and the customer — not the tech-
nology. This is particularly true for AI applications. In
the early days of AI applications, the mind share of
the developers tended more heavily to the technolo-
gy (the knowledge-representation methods and the
reasoning machinery) than it did to the customer
need. In retrospect, this was to be expected. The early
implementers were almost always AI researchers,
infringing on an IT community that was by and large
skeptical of the hype and the baggage that came along
with the technology — nonstandard hardware and
software, methods that were not understood by the
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Table 3. Checklist for Builders of AI Applications.

 Select problems with a solid business case. 

 Minimize changes required in existing work flows. 

 Identify domain- or task-specific knowledge and data for the problem.

 Select appropriate knowledge representations and data sources. 

 Develop knowledge and data acquisition and maintenance plans. 

 Select appropriate reasoning/learning strategies. 

 Develop a set of test cases and performance metrics. 

 Add safeguards and opt-out capabilities. 

 Test with real data from users or operating environment. 

community, the need to bring in outside experts.
Over the years, AI application developers have

made a major mind shift. We have learned the hard
way that success starts with solving problems impor-
tant to the customer.

One caveat: Although public interest in AI is on the
rise, do not add an AI component to an application
just for the sake of it. AI can introduce complexity,
and systems should always only be as complicated as
is necessary to model the domain and task. Again,
focus on customer over technology. 

Minimize Changes Required 
in Existing Work Flows
Think about the integration of AI with other tools
and parts of the larger system. It is rare to complete-
ly replace an existing work flow. Thus, it is prudent to
build new systems so that they can slot into the
approaches already used by the customers as much
as possible. Few new AI systems solve stand-alone
problems that require no user interaction. Most are
used as “intelligent assistants” and the amount of
change management required to succeed in adoption
is directly proportional to the magnitude of the
changes required in existing work flows. Ease of use
is the “license to operate.”

Identify Domain- or Task-Specific 
Knowledge and Data for the Problem
The history of successful AI applications shows that
“the power is in the knowledge,” both expert-pro-
vided knowledge and knowledge extracted out of
data with the appropriate preprocessing, feature
selection, learning techniques, and parameter tun-
ing. Devote up front the effort needed to acquire
enough of the knowledge and data so that you will
better understand how to design the rest of the sys-
tem to best match the domain and task.

Select Appropriate Knowledge 
Representations and Data Sources
Depending on the nature of the domain- and task-

specific knowledge, choose a knowledge representa-
tion that most closely models the world while still
supporting efficient reasoning strategies. Prefer
declarative knowledge since it is easier to understand,
explain and change than procedural knowledge. For
machine-learning approaches, select high-quality
data sources (for example, data with expert-verified
ground truth) when feasible or develop a strategy for
learning and reasoning with noisy data sources.

Develop Knowledge and Data 
Acquisition and Maintenance Plans
Consider knowledge/data acquisition and mainte-
nance to be an ongoing process. Make the process
iterative: repeatedly evaluate if the knowledge and
data are appropriate for the reasoning/learning strate-
gies and domain/task and refine accordingly.

Select Appropriate Reasoning 
and Learning Strategies
Most large AI systems will require various kinds of
reasoning and learning strategies for various sub-
problems. Design a system architecture that supports
decoupling of these disparate components so that
refinements in one component will not require dras-
tic changes in other components. 

Depending on the constraints dictated by the
domain and task, select an approach and compo-
nents that are data driven or model driven, or use a
combination.

Develop a Set of Test Cases 
and Performance Metrics
Due to the complexity of most AI systems, testing
and performance evaluation are critical. 

The word performance encompasses a variety of
concerns, including run-time speed and use of
resources plus adequacy of the knowledge and rea-
soning components. Run-time speed and use of
resources are standard computational concerns that
must be addressed in any system that is to be
deployed and scaled. They are not specific to AI appli-



cations — but adequacy of the knowl-
edge and reasoning components is spe-
cific to AI applications.

Sometimes the desired behavior of
the system is clear, as was the case
when IBM was developing Watson to
win the Jeopardy! game show against
human contestants (Ferrucci et al.
2010). Keep track of the performance
of every revision and consider a policy
(as IBM did with Watson) that rejects
any revisions that do not push per-
formance closer to the goal. 

When the goal criteria are not as
clear, make extensive use of regression
tests to ensure that solved cases are
never broken in the future. Sometimes,
even regression tests are too precise as
multiple different outcomes may be
equally good. A good technique in
these situations is to build machinery
to automatically identify any changes
in the system’s output after each code
or knowledge base revision. Knowing
what changed after an update is a valu-
able first step in identifying if develop-
ment is on the right track.

Add Safeguards and 
Opt-Out Capabilities
AI has been known, on occasion, to
produce odd and unpredictable results
due to complex reasoning systems,
large data sets, and large knowledge
bases. Hence, special care should be
taken to verify data produced by AI
subsystems. In addition, there is a pre-
mium on testing carefully for
machine-learning systems that do not
have transparent reasoning processes. 

This advice should be heeded more
diligently for builders of AI applications
that make use of human input and
applications that are responsible for
making decisions for users. For that
matter, such applications should pro-
vide an opt-out capability that lets the
user complete an action without AI
assistance. An AI system is even stron -
ger when it can explain its decisions
and can help users make sense of the
AI’s assistance and better decide if they
prefer to continue making use of it.

Test with Real Data from Users
or Operating Environment
At i2k Connect, we have learned that
there is a long tail of the kinds of doc-
uments humans (and computers) pro-

duce and that may be fed into our doc-
ument enrichment service. During the
early development effort, we focused
on straightforward cases such as
research articles in PDF form and
Microsoft Word documents made up
mostly of text. However, real data
from real users can be drastically dif-
ferent and highly variable. For exam-
ple, we learned that our system did
not properly handle large text files
produced by computer software (such
as log files or data dumps), and need-
ed extra logic to examine each file
before deciding what kinds of process-
ing would be appropriate. In other
examples, roboticists know that robots
must be tested in the real world and
not just simulations, and developers of
personal assistants, chatbots, search
engines, and other tools know that
humans are an unpredictable source of
a wide range of inputs.

Conclusion
For AI to benefit humankind it must
be deployed; for successful deploy-
ment, good AI ideas must be integrat-
ed into the human context of actual
use and into the IT context of organi-
zations. In this article, we have tried to
summarize what has been learned
about building, maintaining, and
extending AI applications. We have
boiled it down into a simple checklist
for the developers of today and tomor-
row.

Going forward, we can expect the
landscape of AI applications to contin-
ue to diversify and expand. The revo-
lutions will continue all around us, in
computers and data, as well as sensing.

So, it follows that apps will contin-
ue to get more powerful, more knowl-
edgeable, and cover a broader array of
domains and tasks.

It also follows that apps will be
increasingly data driven, guided by
human knowledge. And they will have
a lot more data available, as the Inter-
net of Things takes off.

Finally, intelligent assistants will be
even more proficient at improving
quality of life. The partnership
between human and machine is going
to be stronger and closer. How will this
improve quality of life? Jobs tend to be
more satisfying when we humans are
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able to focus on the real work we set
out to do, not distracted by the low-
level clutter that most people are
forced to deal with today, because
computers aren’t powerful enough, or
because no attempt has yet been made
to automate the jobs people don’t
want to do. Intelligent assistants will
deal with the clutter of low-level tasks,
or tasks that require extended concen-
tration, consistency, scale, and so on.

As an example, we see big opportu-
nities with unstructured data. It will no
longer be lost in the cloud — whether
the corporate cloud or the Internet
cloud. We will have the tools to find it
and unlock its connections. We will
also have the tools to extract the essen-
tial information from the cluttered
real-time data streams that overwhelm
us today.

As the developers of today and
tomorrow address the new opportuni-
ties, the history of IAAI conferences
offers lessons in how to build success-
ful deployed AI applications. We have
attempted to distill these lessons to
increase the chances of future success.
In these concluding remarks, we have
just a few final bits of advice. 

It is prudent for AI researchers to pay
attention to what is being learned
through engineering practice —
deployed applications — as was hoped
for from the beginning of IAAI. And it
is prudent for practitioners to take
advantage of opportunities to learn
from research, as was hoped for by
colocating the AAAI and IAAI confer-
ences, and by adding the Emerging
Applications track to the IAAI confer-
ence in 1997. 

It is also wise to pay attention to
what is happening in the rest of the
computing, data, and sensing world.
Factors external to AI are likely to have
the largest impact on what matters, or
what is possible, or where opportuni-
ties lie. The biggest impact on how we
are able to build applications today has
come from revolutions that were not
of our own making. Watch for signals
from the periphery. 

And finally, to quote Neil Jacobstein,
“AI expands the range of the possible.”
So keep doing it! 
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Notes
1. See Dennis Bode, The Ivy Bridge Test:
Intel Core i7-3770K and all i5 models (Hard-
ware LUXX), available at www.hardware-
luxx.com/index.php/reviews/hardware/cpu
/21569-ivy-bridge-test-intel-core-i7-3770k-
and-all-i5-models.html?start=13. 

2. For more information about CLIPS see
www.clipsrules.net/?q=AboutCLIPS. 

3. The Enterprise Search and Findability
Survey 2014, by Carl Björnfors and Mattias
Ellison, is available at www2.findwise.com/
findabilitysurvey2014.

4. Robot Operating System (ROS) is avail-
able at www.ros.org. 

5. deeplearning.stanford.edu/wiki/index.ph
p/UFLDL_Tutorial. 

6. Available at www.reidgsmith.com/2016-
02-15_Engelmore_Lecture.pdf
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This article presents PAWS, a game-theoretic application
deployed in Southeast Asia for optimizing foot patrols
to combat poaching. In this article, we report on the

significant evolution of PAWS from a proposed decision aid
introduced in 2014 to a regularly deployed application. We
outline key technical advances that lead to PAWS’s regular
deployment: (1) incorporating complex topographic fea-
tures, for example, ridgelines, in generating patrol routes; (2)
handling uncertainties in species distribution (game-theoret-
ic payoffs); (3) ensuring scalability for patrolling large-scale
conservation areas with fine-grained guidance; and (4) han-
dling complex patrol scheduling constraints.

Poaching is a serious threat to wildlife conservation and
can lead to the extinction of species and destruction of
ecosystems. For example, poaching is considered a major
driver (Chapron et al. 2008) of why tigers are now found in
less than 7 percent of their historical range (Sanderson et al.
2006), with three out of nine tiger subspecies already extinct
(IUCN 2015). As a result, efforts have been made by law
enforcement agencies in many countries to protect endan-
gered animals from poaching. The most direct and com-
monly used approach is conducting foot patrols. However,
given their limited human resources and the vast area in
need of protection, improving the efficiency of patrols
remains a major challenge.
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n Poaching is considered a major
driver for the population drop of
key species such as tigers, ele-
phants, and rhinos, which can be
detrimental to whole ecosystems.
While conducting foot patrols is
the most commonly used
approach in many countries to
prevent poaching, such patrols
often do not make the best use of
the limited patrolling resources.



Game theory has become a well-established para-
digm for addressing complex resource allocation and
patrolling problems in security and sustainability
domains. Models and algorithms have been proposed
and studied extensively in the past decade, forming
the general area of security games (Tambe 2011). Fur-
thermore, several security-game-based decision sup-
port systems have previously been successfully
deployed in protecting critical infrastructure such as
airports, ports, and metro trains (Pita et al. 2008;
Shieh et al. 2012; Yin et al. 2012). Inspired by the suc-
cess of these deployments, researchers have begun
applying game theory to generating effective patrol
strategies in green security domains such as protect-
ing wildlife (Yang et al. 2014; Fang, Stone, and Tambe
2015), preventing overfishing (Haskell et al. 2014,
Qian et al. 2014), and illegal logging (Johnson, Fang,
and Tambe 2012).

Among these prior works, a novel emerging appli-
cation called PAWS (protection assistant for wildlife
security) (Yang et al. 2014) was introduced as a game-
theoretic decision aid to optimize the use of human
patrol resources to combat poaching. PAWS was the
first of a new wave of proposed applications in the
subarea now called green security games (Fang, Stone,
and Tambe 2015; Kar et al. 2015). Specifically, PAWS
solves a repeated Stackelberg security game, where
the patrollers (defenders) conduct randomized
patrols against poachers (attackers) while balancing
the priorities of different locations with different ani-
mal densities. Despite its promise, the initial PAWS
effort did not test the concept in the field.

This article reports on PAWS’s significant evolution
over the last two years from a proposed decision aid
to a regularly deployed application. We report on the
innovations made in PAWS and lessons learned from
the first tests in Uganda in spring 2014, through its
continued evolution since then, to current deploy-
ments in Southeast Asia and plans for future world-
wide deployment. In this process, we have worked
closely with two nongovernment organizations (Pan-
thera and Rimba) and incorporated extensive feed-
back from professional patrolling teams. Indeed, the
first tests revealed key shortcomings in PAWS’s initial
algorithms and assumptions (we will henceforth refer
to the initial version of PAWS as PAWS-Initial, and to
the version after our enhancement as PAWS). First, a
major limitation was that PAWS-Initial ignored topo-
graphic information. Second, PAWS-Initial assumed
animal density and relevant problem features at dif-
ferent locations to be known, ignoring the uncer-
tainty. Third, PAWS-Initial could not scale to provide
detailed patrol routes in large conservation areas.
Finally, PAWS-Initial failed to consider patrol-sched-
uling constraints.

In this article, we outline novel research advances
that remedy the aforementioned limitations, making
it possible to deploy PAWS on a regular basis. First,
we incorporate elevation information and land fea-

tures and use a novel hierarchical modeling approach
to building a virtual street map of the conservation
area. This virtual street map helps scale-up while pro-
viding fine-grained guidance and is an innovation
that would be useful in many other domains requir-
ing patrolling of large areas. Essentially, the street
map connects the whole conservation area through
easy-to-follow route segments such as ridgelines,
streams, and river banks. The rationale for this comes
from the fact that animals, poachers, and patrollers
all use these features while moving. To address the
second and third limitations, we build on the street
map concept with a novel algorithm that uniquely
synthesizes two threads of prior work in the security
games literature; specifically, the new PAWS algo-
rithm handles payoff uncertainty using the concept
of minimax regret (Nguyen et al. 2015), while simul-
taneously ensuring scalability — using our street
maps — through the cutting plane framework (Yang
et al. 2013). Finally, we incorporate into PAWS the
ability to address constraints such as patrol time lim-
its and starting and ending at the base camp. In the
final part of the article, we provide detailed informa-
tion about the regular deployment of PAWS.

Background and Related Work
Criminologists have worked on the problem of com-
bating poaching, from policy design to illegal trade
prevention (Lemieux 2014). Geographic information
systems (GIS) experts (Hamisi 2008) and wildlife
management staff (Wato, Wahungu, and Okello
2006) have carefully studied the identification of
poaching hotspots. In recent years, software tools
such as SMART2 and MIST (Stokes 2010) have been
developed to help conservation managers record data
and analyze patrols retrospectively. We work on a
complementary problem of optimizing the patrol
planning of limited security staff in conservation
areas.

In optimizing security resource allocation, previ-
ous work on Stackelberg security games (SSGs) has
led to many successfully deployed applications for
the security of airports, ports, and flights (Pita et al.
2008; Fang, Jiang, and Tambe 2013). Based on the
early work on SSGs, recent work has focused on green
security games (Kar et al. 2015), providing conceptu-
al advances in integrating learning and planning
(Fang, Stone, and Tambe 2015) and the first applica-
tion to wildlife security, PAWS-Initial. PAWS-Initial
(Yang et al. 2014) models the interaction between the
patroller (defender) and the poacher (attacker) who
places snares in the conservation area (see figure 1) as
a basic green security game, that is, a repeated SSG,
where every few months, poaching data is analyzed,
and a new SSG is set up enabling improved patrolling
strategies. The deployed version of PAWS adopts this
framework.

We provide a brief review of SSGs, using PAWS as a
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key example. In SSGs, the defender protects T targets
from an adversary by optimally allocating a set of R
resources (R < T) (Pita et al. 2008). In PAWS, the
defender discretizes the conservation area into a grid,
where each grid cell is viewed as a target for poach-
ers, to be protected by a set of patrollers. The defend-
er’s pure strategy is an assignment of the resources to
targets. The defender can choose a mixed strategy,
which is a probability distribution over pure strate-
gies. The defender strategy can be compactly repre-
sented as a coverage vector c = 〈ci〉 where ci is the cov-
erage probability, that is, the probability that a
defender resource is assigned to be at target i
(Korzhyk, Conitzer, and Parr 2010). The adversary
observes the defender’s mixed strategy through sur-
veillance and then attacks a target. An attack could
refer to the poacher, a snare, or some other aspect
facilitating poaching (for example, poaching camp).
Each target is associated with payoff values that indi-
cate the reward and penalty for the players. If the
adversary attacks target i, and i is protected by the
defender, the defender gets reward Udr,i and the adver-
sary receives penalty Uap,i. Conversely, if not protect-
ed, the defender gets penalty Udp,i and the adversary
receives reward Uar,i. U

a
r,i is usually decided by animal

density — higher animal density implies higher pay-
offs. Given a defender strategy c and the penalty and
reward values, we can calculate the players’ expected
utilities Uai and Udi when target i is attacked accord-
ingly.

In SSGs, the adversary’s behavior model decides his
response to the defender’s mixed strategy. Past work
has often assumed that the adversary is perfectly
rational, choosing a single target with the highest
expected utility (Pita et al. 2008). PAWS is the first
deployed application that relaxes this assumption in
favor of a bounded rationality model called SUQR,
which models the adversary’s stochastic response to
defender’s strategy (Nguyen et al. 2013). SUQR was
shown to perform the best in human subject experi-
ments when compared with other models. SUQR pre-
dicts the adversary’s probability of attacking i based
on a linear combination of three key features at the
targets, including the coverage probability ci, the
attacker’s reward Uar,i and penalty Uap,i. A set of param-
eters (w1, w2, w3) are used for combining the features.
They indicate the importance of the features and can
be learned from data.

First Tests and Feedback
We first tested PAWS-Initial (Yang et al. 2014) at
Uganda’s Queen Elizabeth National Park (QENP) for
three days. Subsequently, with the collaboration of
Panthera and Rimba, we started working in forests in
Malaysia in September 20141. These protected forests
are home to endangered animals such as the Malayan
tiger and Asian elephant but are threatened by
poachers. One key difference of this site compared to

QENP is that there are large changes in elevation, and
the terrain is much more complex. The first four-day
patrol in Malaysia was conducted in November 2014.
For this test, we set the value of Uar,i (input for PAWS-
Initial) by aggregating observation data recorded dur-
ing April 2014–September 2014. We first set the
importance value of each cell as a weighted sum of
the observed counts of different types of animals and
different human activities. We then dilute the impor-
tance value of available cells to nearby cells by apply-
ing a 5 by 5 Gaussian kernel for a convolution oper-
ation so as to estimate the value for cells with no data
recorded.

These initial tests revealed four areas of shortcom-
ings, which restricted PAWS-Initial from being used
regularly and widely. The first limitation, which was
surprising given that it has received no attention in
previous work on security games, is the critical
importance of topographic information that was
ignored in PAWS-Initial. Topography can affect
patrollers’ speed in key ways. For example, lakes are
inaccessible for foot patrols. Not considering such
information may lead to failure to complete the
patrol route. Figure 2 shows one patrol route during
the test in Uganda. The suggested route (orange
straight line) goes across the water body (lower right
part of figure), and hence the patrollers decided to
walk along the water body (black line). Also, changes
in elevation require extra patrol effort, and extreme
changes may stop the patrollers from following a
route. For example, in figure 3a, PAWS-Initial
planned a route on a 1 kilometer by 1 kilometer grid
(straight lines), and suggested that the patrollers walk
to the north area (row 1, column 3) from the south
side (row 2, column 3). However, such movement
was extremely difficult because of the changes in ele-
vation. So patrollers decided to head toward the

Figure 1. Snares Found by Patrollers.



northwest area as the elevation change is more gen-
tle. In addition, it is necessary to focus on terrain fea-
tures such as ridgelines and streams (figure 3b) when
planning routes for three reasons:

First, they are important conduits for certain mam-
mal species such as tigers; hence, second, poachers
use these features for trapping and moving about in
general; and third, patrollers find it easier to move
around here than on slopes. Figure 4a shows a promi-
nent ridgeline.

The second limitation is that PAWS-Initial assumes
the payoff values of the targets — for example, Uar,i —
are known and fixed. In the domain of wildlife pro-
tection, there can be uncertainties due to animal
movement and seasonal changes. Thus, considering
payoff uncertainty is necessary for optimizing patrol
strategy.

The third limitation is that PAWS-Initial cannot
scale to provide detailed patrol routes in large con-
servation areas, which is necessary for successful
deployment. Detailed routes require fine-grained dis-
cretization, which leads to an exponential number of
routes in total.

The fourth limitation is that PAWS-Initial consid-
ers covering individual grid cells, but not feasible
routes. In practice, the total patrolling time is limit-
ed, and the patrollers can move to nearby areas. A
patrol strategy for implementation should be in the
form of a distribution over feasible patrol routes sat-
isfying these constraints. Without taking these
scheduling (routing) constraints into account, the
optimal coverage probabilities calculated by PAWS-
Initial may not be implementable. Figure 4b shows
an example area that is discretized into four cells and
the base camp is located in the upper left cell. There

are three available patrol routes, each protecting two
targets. The coverage probabilities shown in figure 4c
cannot be achieved by a randomization over the
three routes because the coverage of the upper left
cell (Target 1) should be no less than the overall cov-
erage of the remaining three cells since all routes start
from the base camp.

PAWS Overview
Figure 5 provides an overview of the deployed ver-
sion of PAWS. PAWS first takes the input data and
estimates the animal distribution and human activi-
ty distribution. Based on this information, an SSG-
based game model is built, and the patrol strategy is
calculated. In wildlife protection, there is repeated
interaction between patrollers and poachers. When
patrollers execute the patrol strategy generated by
PAWS over a period (for example, three months),
more information is collected and can become part of
the input in the next round.

PAWS provides significant innovations in address-
ing the aforementioned limitations of PAWS-Initial.
In building the game model, PAWS uses a novel hier-
archical modeling approach to building a virtual
street map, while incorporating detailed topographic
information. PAWS models the poachers bounded
rationality as described by the SUQR model and con-
siders uncertainty in payoff values. In calculating the
patrol strategy, PAWS uses the ARROW (Nguyen et al.
2015) algorithm to deal with payoff uncertainty and
adopts cutting plane approach and column genera-
tion to address the scalability issue introduced by
scheduling constraints.

Input and Initial Analysis
The input information includes contour lines that
describe the elevation, terrain information such as
lakes and drainage, base camp locations, previous
observations (animals and human activities), as well
as previous patrol tracks. However, the point detec-
tions of the presence of animal and human activity
are not likely to be spatially representative. As such,
it is necessary to predict the animal and human activ-
ity distribution over the entire study area. To this
end, we used (1) JAGS (Plummer 2003) to produce a
posterior predictive density raster for tigers (as a tar-
get species) derived from a spatially explicit capture-
recapture analysis conducted in a Bayesian frame-
work; and (2) MaxEnt (Phillips, Anderson, and
Schapire 2006) to create a raster of predicted human
activity distribution based on meaningful geograph-
ical covariates (for example, distance to water, slope,
elevation) in a maximum entropy modeling frame-
work.

Build Game Model
Based on the input information and the estimated
distribution, we build a game model abstracting the
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Figure 2. One Patrol Route During the Test in Uganda.



strategic interaction between the patroller and the
poacher as an SSG. Building a game model involves
defender action modeling, adversary action model-
ing, and payoff modeling. We will discuss all three
parts but emphasize defender action modeling since
this is one of the major challenges to bring PAWS to
a regularly deployed application. Given the topo-
graphic information, modeling defender actions in
PAWS is far more complex than any other previous
security game domain.

Defender Action Modeling 
Based on the feedback from the first tests, we aim to
provide detailed guidance to the patrollers. If we use
a fine-grained grid and treat every fine-grained grid
cell as a target, computing the optimal patrolling
strategy is exceptionally computationally challeng-
ing due to the large number of targets and the expo-
nential number of patrol routes. Therefore, a key
novelty of PAWS is to provide a hierarchical model-
ing solution, the first such model in security game
research. This hierarchical modeling approach allows
us to attain a good compromise between scaling up
and providing detailed guidance. This approach
would be applicable in many other domains for large
open area patrolling where security games are appli-
cable, not only other green security games applica-
tions, but others including patrolling of large ware-
house areas or large open campuses by robots or
UAVs.

More specifically, we leverage insights from hierar-
chical abstraction for heuristic search such as path
planning (Botea, Müller, and Schaeffer 2004) and
apply two levels of discretization to the conservation
area. We first discretize the conservation area into 1
kilometer by 1 kilometer grid cells and treat every
grid cell as a target. We further discretize the grid cells
into 50 meters by 50 meters raster pieces and describe
the topographic information such as elevation in 50-
meter scale. The defender actions are patrol routes
defined over a virtual “street map” — which is built
in terms of raster pieces while aided by the grid cells
in this abstraction as described below. With this hier-
archical modeling, the model keeps a small number
of targets and reduces the number of patrol routes
while allowing for details at the 50-meter scale.

The street map is a graph consisting of nodes and
edges, where the set of nodes is a small subset of the
raster pieces, and edges are sequences of raster pieces
linking the nodes. We denote nodes as key access
points (KAPs) and edges as route segments. The street
map not only helps scalability but also allows us to
focus patrolling on preferred terrain features such as
ridgelines. The street map is built in three steps: (1)
determine the accessibility type for each raster piece,
(2) define KAPs, and (3) find route segments to link
the KAPs.

In the first step, we check the accessibility type of
every raster piece. For example, raster pieces in a lake
are inaccessible, whereas raster pieces on ridgelines or

previous patrol tracks are easily accessible. Ridgelines
and valley lines are inferred from the contour lines
using existing approaches in hydrology (Tarboton,
Bras, and Rodriguez-Iturbe 2007).

The second step is to define a set of KAPs, through
which patrols will be routed. We want to build the
street map in such a way that each grid cell can be
reached. So we first choose raster pieces that can
serve as entries and exits for the grid cells as KAPs,
that is, the ones that are on the boundary of grid cells
and are easily accessible according to the accessibili-
ty type calculated in the first step. When there are
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Figure 3. First Four-Day Patrol in Malaysia. 

Figure 3a shows one suggested route (orange straight lines) and the actual
patrol track (black line). Figure 3b shows the patrollers walking along the
stream during the patrol.
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multiple adjacent raster pieces that are all easily
accessible, we add the midpoint as a KAP. If there are
no easily accessible raster pieces on one side of the
boundary, we choose the raster piece with the lowest
slope as a KAP. In addition, we consider existing base
camps as KAPs as they are key points in planning the
patroller’s route. We choose additional KAPs to
ensure KAPs on the boundary of adjacent cells are
paired. Figure 6 shows identified KAPs and easily
accessible pieces (black and gray raster pieces respec-
tively).

The last step is to find route segments to connect
the KAPs. Instead of inefficiently finding route seg-
ments to connect each pair of KAPs on the map glob-
ally, we find route segments locally for each pair of
KAPs within the same grid cell, which is sufficient to
connect all the KAPs. When finding the route seg-
ment, we design a distance measure that estimates
the actual patrol effort and also gives high priority to
the preferred terrain features. The effort needed for
three-dimensional movement can be interpreted as
the equivalent distance on flat terrain. For example,
for gentle slopes, equivalent “flat-terrain” distance is
obtained by adding eight kilometers for every one
kilometer of elevation ascent according to Naismith’s
rule (Thompson 2011). In PAWS, we apply Naismith’s
rule with Langmuir corrections (Langmuir 1995) for
gentle slopes (< 20°) and apply Tobler’s hiking speed
function (Tobler 1993) for steep slopes (≥ 20°). Very
steep slopes (> 30°) are not allowed. We penalize not
walking on preferred terrain features by adding extra
distance. Given the distance measure, the route seg-
ment is defined as the shortest distance path linking
two KAPs within the grid cell.

The defender’s pure strategy is defined as a patrol
route on the street map, starting from the base camp,
walking along route segments and ending with base
camp, with its total distance satisfying the patrol dis-
tance limit (all measured as the distance on flat ter-
rain). The patroller confiscates the snares along the
route and thus protects the grid cells. More specifi-
cally, if the patroller walks along a route segment that
covers a sufficiently large portion (for example, 50
percent of animal distribution) of a grid cell, the cell
is considered to be protected. The defender’s goal is to
find an optimal mixed patrol strategy — a probabili-
ty distribution over patrol routes.

Poacher Action Modeling and Payoff Modeling
The poacher’s actions are defined over the grid cells
to aid scalability. In this game, we assume the poach-
er can observe the defender’s mixed strategy and then
chooses one target (a grid cell) and places snares in
this target. Following earlier work, the poacher in this
game is assumed to be boundedly rational, and his
actions can be described by the SUQR model.

Each target is associated with payoff values indi-
cating the reward and penalty for the patrollers and
the poachers. As mentioned earlier, PAWS models a
zero-sum game and the reward for the attacker (and
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Figure 4. Illustrative Examples.
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the penalty for the defender) is decided by the animal
distribution. However, in this game model, we need
to handle uncertainty in the players’ payoff values
since key domain features, such as animal density,
that contribute to the payoffs are difficult to precise-
ly estimate. In addition, seasonal or dynamic animal
migration may lead to payoffs to become uncertain
in the next season. We use intervals to represent pay-
off uncertainty in PAWS; the payoffs are known to lie
within a certain interval whereas the exact values are
unknown. Interval uncertainty is, in fact, a well-
known concept to capture uncertainty in security
games (Nguyen et al. 2014, 2015). We determine the
size of the payoff intervals at each grid cell based on
patrollers’ patrol efforts at that cell. If the patrollers
patrol a cell more frequently, there is less uncertain-
ty in the players’ payoffs at that target and thus a
smaller size of the payoff intervals.

Calculate Patrol Strategy
We build on algorithms from the rich security game
literature to optimize the defender strategy. However,
we find that no existing algorithm directly fits our

needs as we need an algorithm that can scale up to
the size of the domain of interest, where (1) we must
generate patrol routes over the street map over the
entire conservation area region, while (2) simultane-
ously addressing payoff uncertainty and (3) bound-
ed rationality of the adversary. While the ARROW
(Nguyen et al. 2015) algorithm allows us to address
(2) and (3) together, it cannot handle scale-up over
the street map. Indeed, while the (virtual) street map
is of tremendous value in scaling up as discussed ear-
lier, scaling up given all possible routes (approxi-
mately equal to 1012 routes) on the street map is still
a massive research challenge. We, therefore, inte-
grate ARROW with another algorithm BLADE (Yang
et al. 2013) for addressing the scalability issue, result-
ing in a novel algorithm that can handle all the three
aforementioned challenges. The new algorithm is
outlined in figure 7. In the following, we explain
how ARROW and BLADE are adapted and integrated.

ARROW attempts to compute a strategy that is
robust to payoff uncertainty given that poachers’
responses follow SUQR. The concept of minimizing
maximum regret is a well-known concept in AI for
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Figure 5. PAWS Overview.
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decision making under uncertainty (Wang and
Boutilier 2003). ARROW uses the solution concept of
behavioral minimax regret to provide the strategy
that minimizes regret or utility loss for the patrollers
in the presence of payoff uncertainty and bounded
rational attackers. In small-scale domains, ARROW
could be provided all the routes (the defender’s pure
strategies), on the basis of which it would calculate
the PAWS solution — a distribution over the routes.
Unfortunately, in large-scale domains like ours, enu-
merating all the routes is infeasible. We must, there-
fore, turn to an approach of incremental solution
generation, which is where it interfaces with the
BLADE framework.
More specifically, for scalability reasons, ARROW first
generates the robust strategy for the patrollers in the
form of coverage probabilities over the grid cells
without consideration of any routes. Similar to
BLADE, a separation oracle is then called to check if
the coverage vector is implementable. If it is imple-
mentable, the oracle returns a probability distribu-
tion over patrol routes that implements the coverage
vector, which is the desired PAWS solution. If it is not
implementable (see figure 4c for an example of a cov-
erage vector that is not implementable) the oracle
returns a constraint (cutting plane) that informs
ARROW why it is not. For the example in figure 4b
and 4c, if ARROW generates a vector as shown in fig-
ure 4c, the constraint returned could be

since all implementable coverage vectors should sat-
isfy this constraint. This constraint helps ARROW
refine its solution. The process repeats until the cov-
erage vector generated by ARROW is implementable.

As described in BLADE (Yang et al. 2013), to avoid
enumerating all the feasible routes to check whether
the coverage vector is implementable, the separation
oracle iteratively generates routes until it has just
enough routes (usually after a small number of itera-
tions) to match the coverage vector probabilities or
get the constraint (cutting plane). At each iteration
of route generation (shown in the bottommost box
in figure 7), the new route is optimized to cover tar-
gets of high value. However, we cannot directly use
any existing algorithm to find the optimal route at
each iteration due to the presence of our street map.
But we note similarities to the well-studied orienteer-
ing problem (Vansteenwegen, Souffriau, and Oud-
heusden 2011) and exploit the insight of the S-algo-
rithm for orienteering (Tsiligiridis 1984).

In particular, in this bottommost box in figure 7, to
ensure each route returned is of high quality, we run
a local search over a large number of routes and
return the one with the highest total value. In every
iteration, we start from the base KAP and choose
which KAP to visit next through a weighted random
selection. The next KAP to be visited can be any KAP
on the map, and we assume the patroller will take the
shortest path from the current KAP to the next KAP.
The weight of each candidate KAP is proportional to
the ratio of the additional target value that can be
accrued and distance from the current KAP. We set
the lower bound of the weight to be a small positive
value to make sure every feasible route can be chosen
with positive probability. The process continues until
the patroller has to go back to the base to meet the
patrol distance limit constraint. Given a large num-
ber of such routes, our algorithm returns a route close
to the optimal solution.

Integrating all these algorithms, PAWS calculates
the patrol strategy consisting of a set of patrol routes
and the corresponding probability for taking them.

Addressing Additional 
Practical Challenges

We have introduced the technical innovations that
lead to PAWS’s deployment. In addition to these
innovations, we have addressed a number of practi-
cal constraints to make the strategy suggested by
PAWS easier to follow by human patrollers. In this
section, we summarize these challenges and our solu-
tions to them.

First, mountaintops should be considered as key
points in the patrol route. In PAWS, we require that
the patrollers always move between KAPs, which are
located at the boundary of the grid cells or the base
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Figure 6. KAPs (Black) for 2 by 2 Grid Cells.



camps. Therefore, in some suggested patrol routes,
the patroller is asked to go to a mountaintop and go
downhill for a short distance and then backtrack.
However, this kind of short downhill followed by
returning uphill will annoy the patrollers, and they
will naturally ignore the downhill part. We address
this problem by considering mountaintops as KAPs
when building the street map. With these additional
KAPs, patrollers are not forced to take the short
downhill unless necessary (that is, when the short
downhill covers areas with high animal density).

Second, there is a limit on working time in addi-
tion to the limit on walking distance. It takes less
time for the patroller to go to an area and then back-
track than to take a loop even if the walking distance
is the same. The reason is the patrollers need to spend
the time to record what they observe, including ani-
mal signs and human activity signs. If the patrollers
walk along the same ridgeline twice in a day, they
only need to record the signs once. Therefore, in
designing the patrol routes, we should consider the
total working time in addition to the total distance.
This is implemented in PAWS by adding additional
constraints in route generation.

Third, not all terrain features should be treated in
the same way. In building the street map, we give
preference to terrain features like ridgelines by
designing a distance measure that penalizes not walk-
ing along the terrain feature. However, how much
priority should be given to the terrain features
depends on the cost of the alternative routes, or how

much easier it is compared to taking other routes. On
the one hand, in a very hilly region of the area where
there are large elevation changes, the patrollers
would highly prefer the terrain features as it is much
easier to walk along them than taking an alternative
route. On the other hand, if the elevation change in
the region is small, the effort of taking a ridgeline for
unit distance is comparable to that of taking an alter-
native route. To differentiate these different cases, we
use secondary derivatives to check how important
the ridgeline is. Instead of penalizing not walking
along the terrain features, we can use a discount fac-
tor for taking the preferred route, and assign a high-
er discount factor for terrain features with a higher
(regarding absolute value) secondary derivative.

Finally, additional factors such as slope should be
considered when evaluating the walking effort. In
the distance measure introduced in the previous sec-
tion, elevation change and terrain features have been
considered, but there are other factors that con-
tribute to the walking effort. For example, walking
along the contour line will lead to zero elevation
change along the way, but the effort needed highly
depends on the slope. Walking along the hillside of a
steep slope takes much more effort than walking on
the flat terrain. Therefore, in the distance measure,
we penalize walking along the hillside and assign a
higher penalty factor for a higher slope.

Trading Off Exploration and Exploitation
Building on the PAWS framework, we provide a vari-
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Figure 7. New Integrated Algorithm.

Separation Oracle

S = S ∪ s  

ARROW: compute optimal coverage
vector c given a set of linear constraints S.ˆ

Route Generation: !nd routes that
constitute the separation hyperplane.

FindCuttingPlane: Find a hyperplane
separating c and feasible region C. If exists,

c ∉ C and a new constraint s is found.ˆ
ˆ

Is c ∈ C? ˆ



ation of PAWS (denoted as PAWS-EvE) that offers the
option of assigning a probability range for selecting
an explorative route. Explorative routes are those
that cover a significant portion of previously unpa-
trolled land, while exploitative routes are those that
cover a significant portion of land previously
patrolled.

The major advantage of selecting exploitative
routes is that patrollers are familiar with those patrol
routes. Having experience with the routes, patrollers
also require less effort on following the routes as they
would with unfamiliar territory, enabling them to
better cover the area they patrol. Further, the explo-
rative routes may require more effort on checking the
map, finding water refill points, and figuring out the
best way around unexpected obstacles. Some of these
tasks require experienced patrollers and additional
equipment, which are not available for every patrol.
However, if patrollers were to only take exploitative
routes, then poachers would easily be able to observe
such a strategy and then focus on targeting other
areas. With the objective of PAWS to minimize
poaching activity, it is necessary to also take explo-
rative routes. Therefore, offering the option of setting
a probability range for selecting an explorative route
would be helpful for practical use. The range is set
before generating the patrols based on these practical
concerns.

To implement the functionality of PAWS-EvE, we
modify the previously mentioned separation oracle
by introducing two sets of routes, the explorative set
and the exploitative set. Two new user-defined
parameters θ and δ are introduced and we add two
new constraints to make sure the probability of
assigning a patrol route from the explorative set lies
within a δ margin of θ. Also, in route generation, we

check if adding a route from the explorative set
would improve the solution, and then we also check
if adding a route from the exploitative set would
improve the solution.

Deployment and Evaluation
PAWS patrols are now regularly deployed at a conser-
vation area in Malaysia. This section provides details
about the deployment and both subjective and objec-
tive evaluations of PAWS patrols.

PAWS patrol aims to conduct daily patrols from
base camps. Before the patrol starts, PAWS generates
the patrol strategy starting from the base camp select-
ed by the patrol team leader. The patrol distance lim-
it considered by PAWS is 10 kilometer per day (equiv-
alent flat terrain). As shown in table 1, this leads to
about 9000 raster pieces to be considered. Thus, it is
impossible to consider each raster piece as a separate
target or consider all possible routes over the raster
pieces. With the two-level discretization and the
street map, the problem scale is reduced, with 8.57(=
194.33/22.67) KAPs and 80 route segments in each
grid cell on average, making the problem manage-
able. The strategy generated by PAWS is a set of sug-
gested routes associated with probabilities and the
average number of suggested routes associated with
probability > 0.001 is 12.

Each PAWS patrol lasts for 4–5 days and is execut-
ed by a team of 3–7 patrollers. The patrol planner will
make plans based on the strategy generated by PAWS.
After reaching the base camp, patrollers execute dai-
ly patrols, guided by PAWS’s patrol routes. Table 2
provides a summary of basic statistics about the
patrols. During the patrol, the patrollers are equipped
with a printed map, a hand-held GPS, and data-
recording booklet. They detect animal and human
activity signs and record them with detailed com-
ments and photos. After the patrol, the data manag-
er will put all the information into a database, includ-
ing patrol tracks recorded by the hand-held GPS, and
the observations recorded in the logbook.

Figure 8 shows various types of signs found during
the patrols. Table 3 summarizes all the observations.
These observations show that there is a serious ongo-
ing threat from the poachers. Column 2 shows results
for all PAWS patrols. Column 3 shows results for
explorative PAWS patrols, the (partial) patrol routes,
which go across areas where the patrollers have nev-
er been before. To better understand the numbers, we
show in column 4 the statistics about early-stage
non-PAWS patrols in this conservation area, which
were deployed for a tiger survey. Although it is not a
fair comparison as the objectives of the non-PAWS
patrols and PAWS patrols are different, comparing
columns 2 and 3 with column 4 indicates that PAWS
patrols are effective in finding human activity signs
and animal signs. Finding the human activity signs is
important to identify hotspots of poaching activity,
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Table 1. Problem Scale for PAWS Patrols.

Average # of Reachable Raster Pieces 9066.67 

Average # of Reachable Grid Cells (Targets) 22.67 

Average # of Reachable KAPs 194.33 

Table 2. Basic Information of PAWS Patrols.

Average Trip Length 4.67 Days 

Average Number of Patrollers 5 

Average Patrol Time Per Day 4.48 hours 

Average Patrol Distance Per Day 9.29 km 



and patrollers’ presence will deter the poachers. Ani-
mals signs are not a direct evaluation of PAWS
patrols, but they indicate that PAWS patrols prioritize
areas with higher animal density. Finding these signs
is aligned with the goal of PAWS — combat poaching
to save animals — and thus is a proof for the effec-

tiveness of PAWS. Comparing column 3 with column
2, we find the average number of observations made
along the explorative routes is comparable to and
even higher than that of all PAWS patrol routes. The
observations on explorative routes are important as
they lead to a better understanding of the unex-
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Figure 8. Various Signs Recorded During PAWS Patrols.

A B

C D

Table 3. Summary of Observations.

Patrol Type All PAWS Patrol Explorative PAWS Patrol Previous Patrol for Tiger Survey 

Total Distance (kilometers) 130.11 20.1 624.75 
Average Number of Human 
Activity Signs per kilometer 

0.86 1.09 0.57 

Average Number of Animal 
Signs per kilometer 

0.41 0.44 0.18 

Courtesy Uda Alok



plored area. These results show that PAWS can guide
the patrollers toward hotspots of poaching activity
and provide valuable suggestions to the patrol plan-
ners.

Along the way of PAWS deployment, we have
received feedback from patrol planners and
patrollers. The patrol planners mentioned that the
top routes in PAWS solution (routes with the highest
probability) come close to an actual planner’s routes,
which shows PAWS can suggest feasible routes and
potentially reduce the burden of the planning effort.
As we deploy PAWS in the future at other sites, the
cumulative human planners’ effort saved by using
PAWS will be a considerable amount. In addition,
patrollers commented that PAWS was able to guide
them toward poaching hotspots. The fact that they
found multiple human signs along the explorative
PAWS patrol routes makes them believe that PAWS is
good at finding good ridgelines that are taken by ani-
mals and humans. Patrollers and patrol planners also
agree that PAWS generates detailed suggested routes,
which can guide the actual patrol. Patrollers com-
mented that the suggested routes were mostly along
the ridgeline, which is easier to follow, compared
with the routes from the first trial by PAWS-Initial.
Figure 9 shows one suggested route (orange line) and
the actual patrol track (black line) during PAWS
patrol in August 2015 (shown on a 1 kilometer by 1
kilometer grid). Due to the precision of the contour
lines we get, we provide a 50-meter buffer zone (light
orange polygon) around the suggested route
(orange/light-gray line). The patrollers started from
the base camp (the green or shaded triangle) and
headed to the southeast. The patrollers mostly fol-
lowed PAWS’s suggested route, indicating that the
route generated by PAWS is easy to follow (contrast

with PAWS-Initial as shown in figure 3a). Finally, the
power of randomization in the PAWS solution can be
expected in the long term.

Lessons Learned
During the development and deployment process,
we faced several challenges, and here we outline
some lessons learned.

First, firsthand immersion in the security environ-
ment of concern is critical to understanding the con-
text and accelerating the development process. The
authors (from USC and NTU) intentionally went for
patrols in the forest with the local patrolling team to
familiarize themselves with the area. The firsthand
experience confirmed the importance of ridgelines,
as several human and animal signs were found along
the way, and also confirmed that extreme changes in
elevation require a considerable extra effort of the
patrollers. This gave us the insight for building the
street map.

Second, visualizing the solution is important for
communication and technology adaptation. When
we communicate with domain experts and human
planners, we need to effectively convey the game-
theoretic strategy generated by PAWS, which is a
probability distribution over routes. We first visualize
the routes with probability > 0.01 using ArcGIS so
that they can be shown on the topographic map and
the animal distribution map. Then for each route, we
provide detailed information that can assist the
human planners’ decision making. We not only pro-
vide basic statistics such as probability to be taken
and total distance, but also estimate the difficulty lev-
el for patrol, predict the probability of finding ani-
mals and human signs, and provide an elevation
chart that shows how the elevation changes along
the route. Such information can help planners’
understanding of the strategy, and also help the plan-
ner assign patrol routes to the appropriate team of
patrollers, as some patrollers may be good at long-dis-
tance walking with flat terrain while others would
prefer short-distance hiking with high elevation
change.

Third, minimizing the need for extra equip-
ment/effort would further ease PAWS future deploy-
ment, that is, patrollers would prefer having a single
hand-held device for collecting patrol data and dis-
playing suggested patrol routes. If PAWS routes could
be embedded in the software that is already in use for
collecting data in many conservation areas, for exam-
ple, SMART, it would reduce the effort required of
planners. This is one direction for future develop-
ment.

Summary
PAWS is a first deployed green security game applica-
tion to optimize human patrol resources to combat
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Figure 9. One Daily PAWS Patrol Route in August 2015.



poaching. We provided key research advances to
enable this deployment; this has provided a practical
benefit to patrol planners and patrollers. The deploy-
ment of PAWS patrols will continue at the site in
Malaysia. Panthera has seen the utility of PAWS, and
we are taking steps to expand PAWS to its other sites.
This future expansion and maintenance of PAWS will
be taken over by Armorway,3 a security games com-
pany (starting in spring 2016); Armorway has signif-
icant experience in supporting security-games-based
software deployments.
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Notes
1. For the security of animals and patrollers, no latitude/lon-
gitude information is presented in this article.

2. The Spatial Monitoring and Reporting Tool (SMART),
www.smartconservationsoftware.org.

3. The company has now changed its name. See
avataai.com.
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Since its inception, social media have been routinely data
mined for marketing consumer goods. Starting around
2010, researchers began to realize that the same tech-

niques could be used for influenza surveillance (Culotta
2010). Since then, social media analytics for public health
has been expanded to monitor a variety of conditions,
including cholera (Chunara, Andrews, and Brownstein
2012), mental health (Golder and Macy 2011), and diet
(Widener and Li 2014). This body of work has shown that
social media can be a useful complement to traditional meth-
ods, such as surveys of medical providers or individuals, for
gathering aggregate public health statistics. Our work
extends the social media analytics approach to a new
domain, foodborne illness. Our most important contribu-
tion, however, is that we go beyond simply monitoring pop-
ulation-level prevalence. Our system, nEmesis, provides spe-
cific, actionable information, which is used to support
effective public health interventions.
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Deploying nEmesis: 
Preventing Foodborne Illness 
by Data Mining Social Media

Adam Sadilek, Henry Kautz, Lauren DiPrete, Brian Labus, 
Eric Portman, Jack Teitel, Vincent Silenzio

n Foodborne illness afflicts 48 million
people annually in the US alone. More
than 128,000 are hospitalized and 3000
die from the infection. While preventable
with proper food safety practices, the tra-
ditional restaurant inspection process has
limited impact given the predictability and
low frequency of inspections, and the
dynamic nature of the kitchen environ-
ment. Despite this reality, the inspection
process has remained largely unchanged
for decades. CDC has even identified food
safety as one of seven ”winnable battles”;
however, progress to date has been limited.
In this work, we demonstrate significant
improvements in food safety by marrying
AI and the standard inspection process.
We apply machine learning to Twitter
data, develop a system that automatically
detects venues likely to pose a public
health hazard, and demonstrate its effica-
cy in the Las Vegas metropolitan area in a
double-blind experiment conducted over
three months in collaboration with Neva-
da’s health department. By contrast, previ-
ous research in this domain has been lim-
ited to indirect correlative validation using
only aggregate statistics. We show that the
adaptive inspection process is 64 percent
more effective at identifying problematic
venues than the current state of the art. If
fully deployed, our approach could prevent
more than 9000 cases of foodborne illness
and 557 hospitalizations annually in Las
Vegas alone. Additionally, adaptive
inspections result in unexpected benefits,
including the identification of venues lack-
ing permits, contagious kitchen staff, and
fewer customer complaints filed with the
Las Vegas health department.



The fight against foodborne illness is complicated
by the fact that many cases are not diagnosed or
traced back to specific sources of contaminated food.
In a typical US city, if a food establishment passes its
routine inspection, it may not see the health depart-
ment again for up to a year. Food establishments can
roughly predict the timing of their next inspection
and prepare for it. Furthermore, the kitchen environ-
ment is dynamic, and ordinary inspections merely
provide a snapshot view. For example, the day after
an inspection, a contagious cook or server could
come to work or a refrigerator could break, either of
which can lead to food poisoning. Unless the out-
break is massive, the illness is unlikely to be traced
back to the venue.

CDC has identified food safety as one of seven
”winnable battles,”1 along with vehicle accidents and
HIV, but progress to date on eradicating the disease
has been limited. Our work adds to the arsenal of
tools we as humanity can use to fight disease.

We present a novel method for detecting problem-
atic venues quickly — before many people fall ill. We
use the term adaptive inspections for prioritizing ven-
ues for inspection based on evidence mined from
social media. Our system (nEmesis) applies machine
learning to real-time Twitter data — a popular
microblogging service where people post message
updates (tweets) that are at most 140 characters long.
A tweet sent from a smartphone is usually tagged
with the user’s precise GPS location. We infer the
food venues each user visited by “snapping” his or
her tweets to nearby establishments (figure 1). We
develop and apply an automated language model
that identifies Twitter users who indicate they suffer
from foodborne illness in the text of their public
online communication. As a result, for each venue,
we can estimate the number of patrons who fell ill
shortly after eating there. In this paper, we build on
our prior work, where we showed a correlation
between the number of “sick tweets” attributable to
a restaurant and its historic health inspection score
(Sadilek et al. 2013). In this paper, we deploy an
improved version of the model and validate its pre-
dictions in a controlled experiment.

The Southern Nevada Health District (SNHD)
conducted a three-month controlled experiment
with nEmesis beginning January 2, 2015. Venues
with the highest predicted risk on any given day
were flagged and subsequently verified through a
thorough inspection by an environmental health
specialist. For each adaptive inspection, we perform
a paired control inspection independent of the
online data to ensure full annual coverage required
by law and to compensate for the geographic bias of
Twitter data. During the first three months, the
environmental health specialists inspected 142 ven-
ues, half using nEmesis and half following the stan-
dard protocol. The latter set of inspections consti-
tutes our control group. The inspectors were not

told whether the venue comes from nEmesis or con-
trol.

nEmesis downloads and analyzes all tweets that
originate from Las Vegas in real time. To estimate vis-
its to restaurants, each tweet that is within 50 meters
of a food venue is automatically “snapped” to the
nearest one as determined by the Google Places API.
We used Google Places to determine the locations of
establishments because it includes latitude/longitude
data that is more precise than the street address of
licensed food venues. As we will see, this decision
allowed nEmesis to find problems at unlicensed ven-
ues.

For this snapping process, we only consider tweets
that include GPS coordinates. Cell phones determine
their location through a combination of satellite
GPS, WiFi access point fingerprinting, and cell-tower
triangularization (Lane et al. 2010). Location accura-
cy typically ranges from 9 meters to 50 meters and is
highest in areas with many cell towers and Wi-Fi
access points. In such cases, even indoor localization
(for example, within a mall) is accurate.

Once nEmesis snaps a user to a restaurant, it col-
lects all of his or her tweets for the next five days,
including tweets with no geo-tag and tweets sent
from outside of Las Vegas. This is important because
most restaurant patrons in Las Vegas are tourists, who
may not show symptoms of illness until after they
leave the city. nEmesis then analyzes the text of these
tweets to estimate the probability that the user is suf-
fering from foodborne illness.

Determining if a tweet indicates foodborne illness
of the user is more complex than simply scanning for
a short list of key words. By its nature, Twitter data is
noisy. Even a seemingly explicit message, such as “I
just threw up,” is incomplete evidence that the
author of the tweet has a foodborne illness. By using
a language model rather than relying on individual
key words, our method is able to better model the
meaning behind the tweet and is therefore able to
capture even subtle messages, such as “have to skip
work tomorrow” or “I need to go to a pharmacy.” Fig-
ure 1 lists the 20 most significant positive and nega-
tive language features that contribute to the score.

nEmesis then associates the individual sickness
scores to the food venues from which the users orig-
inally tweeted. Each snapped twitter user is a proxy
for an unknown number of patrons that visited but
did not tweet. Since contracting foodborne illness
and tweeting at the right times and places is a rela-
tively rare occurrence, even a single ill individual can
be a strong evidence of a problem. The web interface
(figure 2) is used by the managing health specialist to
sort venues by the number of sick users and to dis-
patch inspectors.

Figure 3 illustrates the full nEmesis process. On a
typical day we collect approximately 15,900 geo-
tagged tweets from 3600 users in the Las Vegas area.
Approximately 1000 of these tweets, written by 600
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unique users, snap to a food venue. nEmesis then
tracks these 600 users and downloads all their subse-
quent tweets for the following five days. These sub-
sequent tracked tweets are then scored by the lan-
guage model. Finally, venues are ranked based on the
number of tweets with sickness score exceeding the
threshold of 1.0 determined on a withheld validation
set. During the experiment, nEmesis identified on
average 12 new tweets per day that were strongly
indicative of foodborne illness. Figure 4 shows a dis-
tribution over health scores inferred by nEmesis.

Significance of Results
To the best of our knowledge, this is the first study
that directly tests the hypothesis that social media

provide a signal for identifying specific sources of any
disease through a controlled, double-blind experi-
ment during a real-world deployment. By contrast,
prior work has been anecdotal, limited to finding cor-
relations, and/or didn’t include a control group.

Related Work
Since the famous cholera study by John Snow (1855),
much work has been done in capturing the mecha-
nisms of epidemics. There is ample previous work in
computational epidemiology on building relatively
coarse-grained models of disease spread through dif-
ferential equations and graph theory (Anderson and
May 1979, Newman 2002), by harnessing simulated

Figure 1. The Top 20 Most Significant Negatively and Positively Weighted Features in Our Language Model.

Positive Feature Negative Features
Feature Weight Feature Weight

stomach 1.7633 think i’m sick − 0.8411

stomachache 1.2447 i feel soooo − 0.7156

nausea 1.0935 f--k i’m − 0.6393

tummy 1.0718 @ID sick to − 0.6212

#upsetstomach 0.9423 sick of being − 0.6022

nauseated 0.8702 ughhh cramps − 0.5909

upset 0.8213 cramp − 0.5867

naucious 0.7024 so sick omg − 0.5749

ache 0.7006 tired of − 0.5410

being sick man 0.6859 cold − 0.5122

diarrhea 0.6789 burn sucks − 0.5085

vomit 0.6719 course i’m sick − 0.5014

@ID i’m getting 0.6424 i"’m − 0.4988

#tummyache 0.6422 is sick − 0.4934

#stomachache 0.6408 so sick and − 0.4904

i’ve never been 0.6353 omg i am − 0.4862

threw up 0.6291 @LINK − 0.4744

i’m sick great 0.6204 @ID sick − 0.4704
poisoning 0.5879 if − 0.4695

feel better tomorrow 0.5643 i feel better − 0.4670



large geographical area, typically at the level of a state
or large city. Researchers have examined influenza
tracking (Culotta 2010; Achrekar et al. 2012; Sadilek
and Kautz 2013; Broniatowski and Dredze 2013;
Brennan, Sadilek, and Kautz 2013), mental health
and depression (Golder and Macy 2011; De Choud-
hury et al. 2013), as well as general public health
across a broad range of diseases (Brownstein, Freifeld,
and Madoff 2009; Paul and Dredze 2011b).

Some researchers have begun modeling health and
contagion of specific individuals by leveraging fine-
grained online social and web search data (Ugander
et al. 2012; White and Horvitz 2008; De Choudhury
et al. 2013). For example, in Sadilek, Kautz, and Silen-
zio (2012) we showed that Twitter users exhibiting
symptoms of influenza can be accurately detected
using a model of language of Twitter posts. A detailed
epidemiological model can be subsequently built by
following the interactions between sick and healthy
individuals in a population, where physical encoun-
ters are estimated by spatiotemporal colocated
tweets.

Our earlier work on nEmesis (Sadilek et al. 2013)
scored restaurants in New York City by their number
of sick tweets using an initial version of the language
model described here. We showed a weak but signifi-
cant correlation between the scores and published
NYC Department of Health inspection scores.
Although the data came from the same year, many
months typically separated the inspections and the
tweets.

Other researchers have recently tried to use Yelp
restaurant reviews to identify restaurants that should
be inspected (Harrison et al. 2014). Key words were
used to filter 294,000 Yelp reviews for New York City
to 893 possible reports of illness. These were manu-
ally screened and resulted in the identification of 3
problematic restaurants.

Background: Foodborne Illness
Foodborne illness, known colloquially as food poi-
soning, is any illness that results from the consump-
tion of contaminated food, pathogenic bacteria,
viruses, or parasites that contaminate food, as well as
the consumption of chemical or natural toxins such
as poisonous mushrooms. The US Centers for Disease
Control and Prevention (CDC) estimates that 47.8
million Americans (roughly 1 in 6 people) are sick-
ened each year by foodborne disease. Of that total,
nearly 128,000 people are hospitalized, while just
over 3000 die of foodborne diseases (CDC 2013).

CDC classifies cases of foodborne illness according
to whether they are caused by one of 31 known food-
borne illness pathogens or by unspecified agents.
These 31 known pathogens account for 9.4 million
(20 percent of the total) cases of food poisoning each
year, while the remaining 38.4 million cases (80 per-
cent of the total) are caused by unspecified agents.

populations (Eubank et al. 2004), and by analysis of
official statistics (Grenfell, Bjornstad, and Kappey
2001). Such models are typically developed for the pur-
poses of assessing the impact a particular combination
of an outbreak and a containment strategy would have
on humanity or ecology (Chen, David, and Kempe
2010).

However, the above works focus on aggregate or
simulated populations. By contrast, we address the
problem of predicting the health of real-world popu-
lations composed of individuals embedded in a social
structure and geo-located on a map.

Most prior work on using data about users’ online
behavior has estimated aggregate disease trends in a
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Figure 2. nEmesis Web Interface. 

The top window shows a portion of the list of food venues ranked by the
number of tweeted illness self-reports by patrons. The bottom window pro-
vides a map of the selected venue, and allows the user to view the specific
tweets that were classified as illness self-reports.
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Figure 3. Adaptive Inspection Process. 

Starting from the top: All tweets geo-tagged in the Las Vegas area are collect-
ed. Tweets geo-tagged within 50 meters of a food venue are snapped to that
venue, and the Twitter IDs of the users are added to a database of users to
be tracked. All tweets of tracked users are collected for the next five days,
whether or not the users remain in Las Vegas. These tweets are evaluated by
the language model to determine which are self-reports of symptoms of
foodborne illness. Venues are ranked according to the number of patrons
who later reported symptoms. Health department officials use the nEmesis
web interface to select restaurants for inspection. Inspectors are dispatched
to the chosen restaurants, and findings reported.
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Food poisoning episodes associated with these 31
known pathogens account for an estimated 44 per-
cent of all hospitalizations resulting from foodborne
illness, as well as 44 percent of the deaths. Of these 31
known pathogens, the top five (Norovirus, Salmonella,
Clostridium perfringens, Campylobacter species, and
Staphylococcus aureus) account for 91 percent of the
cases of foodborne illness, 88 percent of the cases
that require hospitalization, and 88 percent of the
cases that result in death. The economic burden of
health losses resulting from foodborne illness are
staggering. One recent study estimated the aggregat-
ed costs in the United States alone to be $77.7 billion
annually (Scharff 2012).

Despite the variability in the underlying etiology
of foodborne illness, the signs and symptoms of dis-
ease overlap considerably. The most common symp-
toms include vomiting, diarrhea (occasionally
bloody), abdominal pain, fever, and chills. These
symptoms can be mild to serious, and may last from
hours to several days. Some pathogens can also cause
symptoms of the nervous system, including
headache, numbness or tingling, blurry vision, weak-
ness, dizziness, and even paralysis. The gastrointesti-
nal fluid losses can commonly result in dehydration,
leading to secondary symptoms such as excessive
thirst, infrequent urination, dark-colored urine,
lethargy, and lightheadedness. Typically, symptoms
appear within hours, but may also occur days to even
weeks after exposure to the pathogen (Morris and
Potter 2013). According to the US Food and Drug
Administration (FDA), the vast majority of these
symptoms will occur within three days (FDA 2012).

Public health authorities use an array of surveil-
lance systems to monitor foodborne illness. In the
United States, the CDC relies heavily on data from
state and local health agencies, as well as more recent
systems such as sentinel surveillance systems and
national laboratory networks, which help improve
the quality and timeliness of data (CDC 2013). An
example of the many systems in use by CDC would
include the Foodborne Diseases Active Surveillance
Network, referred to as FoodNet. FoodNet is a sen-
tinel surveillance system using information provided
from sites in 10 states, covering about 15 percent of
the US population, to monitor illnesses caused by
seven bacteria or two parasites commonly transmit-
ted through food. Other systems include the Nation-
al Antimicrobial Resistance Monitoring System
(NARMS), the National Electronic Norovirus Out-
break Network (CaliciNet), and the National Molecu-
lar Subtyping Network for Foodborne Disease Sur-
veillance (PulseNet), among many others.

A major challenge in monitoring foodborne illness
is in capturing actionable data in real time. Like all
disease surveillance programs, each of the systems
currently in use by CDC to monitor foodborne illness
can entail significant time lags between when cases
are identified and the data is analyzed and reported.



Whereas this is not as important a limitation in terms
of epidemiological surveillance, using surveillance
data to actively intervene in outbreaks of foodborne
illnesses can be challenging when surveillance data
may not infrequently identify cases after the window
of opportunity needed to prevent additional cases
(Heymann 2004).

Methods
There are three general types of restaurant inspec-
tions conducted by health departments. First, restau-
rants are inspected prior to receiving a permit to
ensure that the facility is designed and constructed
in a way that allows food to be handled, prepared,
and served in a safe manner. For example, inspec-
tions would ensure that food contact surfaces were
durable and able to be easily cleaned, backflow pre-
vention devices were installed in the plumbing sys-
tem, and that commercial-grade appliances were
installed. Once this type of inspection is completed
for a facility, it would not be conducted again unless
the facility was renovated. 

The second, and most common, type of inspec-

tions are routine inspections. Routine inspections are
not driven by the occurrence of problems, but are
conducted periodically to prevent foodborne illness
by ensuring that the facility is operating in accor-
dance with good food-handling practices. Nevada
law requires that these types of inspections happen at
least annually. A routine inspection is a risk-based
process addressing a food establishment’s control
over the five areas of risk for foodborne illness: per-
sonal hygiene, approved food source, proper cooking
temperatures, proper holding times and tempera-
tures, and sources of contamination. 

A third type of inspection is a complaint-driven
inspection initiated by either consumer complaints
or the identification of a foodborne illness occurrence
that may be associated with the facility. These inspec-
tions have a narrow focus but look in depth at a prob-
lem. For example, an inspection based on a com-
plaint of improper handwashing at a restaurant
would result in the inspector evaluating the hand-
washing facilities (that is, the availability of hand
sinks, hot water, soap, and paper towels) and observ-
ing employees as they wash their hands, but would
not result in a complete inspection of the facilities. If
the inspection were related to foodborne illness, the
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Figure 4. Distribution of Inferred Health Scores (Horizontal Axis) for One Week's Worth of Tweets. 

The vertical axis shows the common logarithm of the number of messages with a particular health score. Higher scores indi-
cate increased probability of being sick. Note that a tiny proportion of tweets (scores larger than 1.0) confidently show a
foodborne illness.
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inspection would focus on the preparation of the par-
ticular foods consumed and the risk factors for the
contamination, proliferation or amplification, and
survival of the causative organism. This type of
inspection is reactive in nature, and while it may pre-
vent additional disease, problems in the facility have
already occurred. The ultimate goal of all of these
types of inspections is to prevent foodborne illness.
Historically, there has been no way to easily identify
restaurants having a decline in food handling prac-
tices and easily prevent illness, as inspections are
based largely on the elapsed time from a previous
inspection. As a result, these types of inspections rep-
resent the bulk of inspection activities but tend to be
rather inefficient in identifying problem facilities.
Complaint-driven inspections, while important,
identify the problems after they have occurred,
which is too late to prevent disease. More important-
ly, foodborne illnesses are frequently underdiagnosed
and underreported (Scallan et al. 2011), preventing
public health officials from identifying the source of
illness for most foodborne infections.

Clark County, Nevada, is home to more than 2
million people and hosts over 41 million annual vis-
itors to the Las Vegas metropolitan area. The South-
ern Nevada Health District (SNHD) is the govern-
mental agency responsible for all public health
matters within the county and is among the largest
local health departments in the United States by pop-
ulation served. In 2014, SNHD conducted 35,855
food inspections (of all types) in nearly 16,000 per-
mitted facilities. In Southern Nevada, inspection vio-
lations are weighted based on their likelihood to
directly cause a foodborne illness and are divided
into critical violations at 5 demerits each (for exam-
ple, food handlers not washing hands between han-
dling raw food and ready to eat food), to major vio-
lations at 3 demerits each (hand sink not stocked
with soap), to good food management practices with
no demerit value (leak at the hand sink). Demerits are
converted to letter grades, where 0–10 is an A, 11–20
is a B, 21–39 is a C, and 40+ is an F (immediate clo-
sure). A repeated violation of a critical or major item
causes the letter grade to drop to the next lower rank.
A grade of C or F represents a serious health hazard.

Controlled Experiment: 
Adaptive Inspections
During the experiment, when a food establishment
was flagged by nEmesis in an inspector’s area, he was
instructed to conduct a standard, routine inspection
on both the flagged facility (adaptive inspection) and
also a provided control facility (routine inspection).
Control facilities were selected according to their loca-
tion, size, cuisine, and their permit type to pair the
facilities as closely as possible. The inspector was blind
as to which facility was which, and each facility
received the same risk-based inspection as the other.

Labeling Data at Scale
To scale the laborious process of labeling training
data for our language model, we turn to Amazon’s
Mechanical Turk.2 Mechanical Turk allows requesters
to harness the power of the crowd in order to com-
plete a set of human intelligence tasks (HITs). These
HITs are then completed online by hired workers
(Mason and Suri 2012).

We formulated the task as a series of short surveys,
each 25 tweets in length. For each tweet, we ask “Do
you think the author of this tweet has an upset stom-
ach today?” There are three possible responses
(“Yes,” “No,” “Can’t tell”), out of which a worker has
to choose exactly one (figure 5). We paid the workers
1 cent for every tweet evaluated, making each survey
25 cents in total. Each worker was allowed to label a
given tweet only once. The order of tweets was ran-
domized. Each survey was completed by exactly five
workers independently. This redundancy was added
to reduce the effect of workers who might give erro-
neous or outright malicious responses. Inter-annota-
tor agreement measured by Cohen’s κ is 0.6, consid-
ered a moderate to substantial agreement in the
literature (Landis and Koch 1977). Responses from
workers who exhibit consistently low annotator
agreement with the majority were eliminated.

Workers were paid for their efforts only after we
were reasonably sure their responses were sincere
based on inter-annotator agreement. For each tweet,
we calculate the final label by adding up the five con-
stituent labels provided by the workers (Yes = 1, No
= –1, Can’t tell = 0). In the event of a tie (0 score), we
consider the tweet healthy in order to obtain a high-
precision data set.

Designing HITs to elicit optimal responses from
workers is a difficult problem (Mason and Suri 2012).
Pricing HITs poorly can lead to workers not even
considering a task; HITs that are too long can cause
worker attrition, poorly or ambiguously worded HITs
will lead to noisy data. Worker satisfaction is also an
important “latent” factor, which should not be tak-
en lightly. Many Mechanical Turk workers are mem-
bers of communities that offer requester reviews,
very similar to Amazon’s product review system. As
a result, requesters who are unresponsive or oppor-
tunistic will soon find it hard to get any HIT com-
pleted.

Given that tweets indicating foodborne illness are
relatively rare, learning a robust language model pos-
es considerable challenges (Japkowicz et al. 2000;
Chawla, Japkowicz, and Kotcz 2004). This problem
is called class imbalance and complicates virtually all
machine learning. In the world of classification,
models induced in a skewed setting tend to simply
label all data as members of the majority class. The
problem is compounded by the fact that the minor-
ity class members (sick tweets) are often of greater
interest than the majority class.

We overcome class imbalance faced by nEmesis
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through a combination of two techniques: human
guided active learning, and learning a language mod-
el that is robust under class imbalance. We cover the
first technique in this section and discuss the lan-
guage model induction in the following section.

Previous research has shown that under extreme
class imbalance, simply finding examples of the
minority class and providing them to the model at
learning time significantly improves the resulting
model quality and reduces human labeling cost
(Attenberg and Provost 2010). In this work, we lever-
age human guided machine learning — a novel
learning method that considerably reduces the
amount of human effort required to reach any given
level of model quality, even when the number of
negatives is many orders of magnitude larger than
the number of positives (Sadilek et al. 2013). In our
domain, the ratio of sick to healthy tweets is rough-
ly 1 : 2500.

In each human guided learning iteration, nEmesis
samples representative and informative examples to
be sent for human review. As the focus is on the
minority class examples, we sample 90 percent of

tweets for a given labeling batch from the top 10 per-
cent of the most likely sick tweets (as predicted by our
language model). The remaining 10 percent is sam-
pled uniformly at random to increase diversity. We
use the HITs described above to obtain the labeled
data.

In parallel with this automated process, we hire
workers to actively find examples of tweets in which
the author indicates he or she has an upset stomach.
We asked them to paste a direct link to each tweet
they find into a text box. Workers received a base pay
of 10 cents for accepting the task, and were motivat-
ed by a bonus of 10 cents for each unique relevant
tweet they provided. Each wrong tweet resulted in a
10 cent deduction from the current bonus balance of
a worker. Tweets judged to be too ambiguous were
neither penalized nor rewarded. Overall, we have
posted 50 HITs that resulted in 1971 submitted tweets
(mean of 39.4 per worker). Removing duplicates
yielded 1176 unique tweets.

As a result, we employ human workers that “guide”
the classifier induction by correcting the system when
it makes erroneous predictions, and proactively seek-
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Figure 5. Example of a Mechanical Turk Task.

In this task, online workers are asked to label a given tweet. While tweets are often ambiguous, we encouraged workers to
use their best judgment and try to polarize their answers. We found that when workers are presented with too many options,
they tend to select “Can’t tell” even when the text contains a strong evidence of illness.

Help us �nd health problems looming behind these tweets.
Please use your best judgment to evaluate these tweets for signs of upset stomach, e.g. food poisoning, diarrhea, 
stomach ache, or food-related disease. Use theradio-buttons to select what you think is the most likely answer for 
each tweet. You will be paid based on agreement of your input with other workers and with our automated
system. Please consider each tweet carefully. Use the last response("It's absolutely impossible to tell from
this tweet") only when absolutely sure the health of the person cannot be estimated.

• Evaluate all tweets to complete the HIT.

• The tweets are often ambiguous or even nonsensical. Please use your best judgment to
!nd the best label for each tweet.

• You are not required to follow any links that may be included in the text.

• The tweets are un!ltered and therefore may contain offensive language.

• Enjoy the HIT, you are helping science! :-)

Do you think the author of this tweet has an upset stomach today?

I want to go to bed. It's 1am and I can't fall asleep because I'm sad :(

Yes: This person likely has an upset stomach

No: This person does NOT indicate upset stomach in this tweet

It's absolutely impossible to tell from this tweet



ing and labeling examples of the minority classes.
Thus, people and machines work together to create
better models faster. This combination of human
guided learning and active learning in a loop with a
machine model has been shown to lead to signifi-
cantly improved model quality (Sadilek et al. 2013).

In a postmortem, we have manually verified sub-
mitted tweets and 97 percent were correct sick tweets.
This verification step could also be crowdsourced.
Since searching for relevant tweets is significantly
more time consuming than simply deciding if a giv-
en tweet contains a good example of sickness, future
work could explore multitiered architecture, where a
small number of workers acting as “supervisors” ver-
ify data provided by a larger population of “assis-
tants.” Supervisors as well as assistants would collab-
orate with an automated model, such as the support
vector machine (SVM) classifier described in this
paper, to perform search and verification tasks.

Language Model
Harnessing human and machine intelligence in a
unified way, we develop an automated language
model that detects individuals who likely suffer from
a foodborne disease, on the basis of their online Twit-
ter communication.

Support vector machines are an established
method for classifying high-dimensional data (Cortes
and Vapnik 1995). We train a linear binary SVM by
finding a hyperplane with the maximal margin sepa-
rating the positive and negative data points. Class
imbalance, where the number of examples in one
class is dramatically larger than in the other class,
complicates virtually all machine learning. For SVMs,
prior work has shown that transforming the opti-
mization problem from the space of individual data
points to one over pairs of examples yields signifi-
cantly more robust results (Joachims 2005).

We use the trained SVM language model to predict
how likely each tweet indicates foodborne illness.
The model is trained on 8000 tweets, each independ-
ently labeled by five human annotators as described
above. As features, the SVM uses all uni-gram, bi-
gram, and tri-gram word tokens that appear in the
training data at least twice. For example, a tweet “My
tummy hurts” is represented by the following feature
vector:

{my, tummy, hurts, my tummy, tummy hurts, my
tummy hurts}

Prior to tokenization, we convert all text to lower
case and strip punctuation. Additionally, we replace
mentions of user identifiers (the “@” tag) with a spe-
cial @ID token, and all web links with a @LINK token.
We do keep hashtags (such as #upsetstomach), as
those are often relevant to the author’s health state,
and are particularly useful for disambiguation of
short or ill-formed messages.

Training the model associates a real-valued weight
to each feature. The score the model assigns to a new

tweet is the sum of the weights of the features that
appear in its text. There are more than 1 million fea-
tures; figure 2 lists the 20 most significant positive
and negative features. While tweets indicating illness
are sparse and our feature space has a very high
dimensionality, with many possibly irrelevant fea-
tures, support vector machines with a linear kernel
have been shown to perform very well under such
circumstances (Joachims 2006, Sculley et al. 2011,
Paul and Dredze 2011a). Evaluation of the language
on a held-out test set of 10,000 tweets shows 0.75
precision and 0.96 recall. The high recall is critical
because evidence of illness is very scarce.

System Architecture
nEmesis consists of several modules that are depict-
ed at a high-level in figure 3. Here we describe the
architecture in more detail. We implemented the
entire system in Python, with NoSQL data store run-
ning on Google Cloud Platform. Most of the code
base implements data download, cleanup, filtering,
snapping (for example, “at a restaurant”), and label-
ing (“sick” or “healthy”). There is also a considerable
model-learning component described in the previ-
ous two sections.

Downloader
This module runs continuously and asynchronously
with other modules, downloading all geo-coded
tweets based upon the bounding box defined for the
Las Vegas Metro area. These tweets are then persist-
ed to a local database in JSON format.

Tracker
For each unique Twitter user that tweets within the
bounding box, this module continues to download
all of their tweets for two weeks, independent of loca-
tion (also using the official Twitter API). These tweets
are also persisted to local storage in JSON format.

Snapper
The responsibility of this module is to identify Las
Vegas area tweets that are geo-coded within 50
meters of a food establishment. It leverages the
Google Places API, which serves precise location for
any given venue. We built an in memory spatial
index that included each of those locations (with a
square boundary based on the target distance we
were looking for). For each tweet, nEmesis identifies
a list of Google Places in the index that overlapped
with the tweet based on its lat/long. If a given tweet
had one or more location matches, the matching
venues are added as an array attribute to the tweet.

Labeler
Each tweet in the data store is piped through our
SVM model that assigns it an estimate of probability
of foodborne illness. All tweets are annotated and
saved back into the data store.

Aggregation Pipelines
We use Map Reduce framework on Google App
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Engine to support custom aggregation pipeline. It
updates statistics about each venue (number of sick
tweets associated with that venue, etc.).

Web Interface
The health professionals interact with nEmesis
through a web application shown in figure 1. All
modules described above work together to produce a
unified view that lists most likely offending venues
along with supporting evidence. This allows inspec-
tors to make informed decisions how to allocate their
resources. The application was written using a com-
bination of Python for the data access layer and
AngularJS for the front-end.

Developing the SVM model took 3 engineer-
months. The backend modules above (Downloader
through Labeler) took 2 engineer-months, and the
Web Interface took an additional engineer-month.

Results and Discussion
Figure 6 is a histogram of the inspection results. There
are clearly more control restaurants (red) that passed

inspection with flying colors — zero or one demerit.
The adaptive inspections (blue) appear to cluster
toward the right — more demerits — but a careful sta-
tistical analysis is necessary to determine if this is real-
ly the case. We use paired Mann-Whitney-Wilcoxon
tests to calculate the probability that the distribution
of demerits for adaptive inspection is stochastically
greater than the control distribution (Mann and Whit-
ney 1947). This test can be used even if the shapes of
the distributions are nonnormal and different, which
is the case here. The test shows that adaptive inspec-
tions uncover significantly more demerits: nine versus
six per inspection (p-value of 0.019).

Note that the result would have been even stronger
if not for an outlier in the control group, a single con-
trol restaurant that received a score of 62 for egre-
gious violations. Even including this outlier, howev-
er, we have very strong statistical evidence that
adaptive inspections are effective.

Chi-squared test at the level of discrete letter grades
(as noted earlier, 0–10 is an A, 11–20 is a B, 21–39 is
a C, and 40+ is an F), also show a significant skew
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Figure 6. Histogram of the Inspection Results.

The adaptive inspections are blue (light gray), and the control inspections are red (dark gray). The horizontal axis is the num-
ber of demerits where the bucket size is 2, and the vertical axis is the number of venues.
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toward worse grades in adaptive
inspections. The most important dis-
tinction, however, is between restau-
rants with minor violations (grades A
and B) and those posing considerable
health risks (grade C and worse).
nEmesis uncovers 11 venues in the lat-
ter category, whereas control finds
only 7, a 64 percent improvement.

All of our data, suitably anonymized
to satisfy Twitter’s terms of use, is avail-
able upon request to other researchers
for further analysis.

CDC studies show that each out-
break averages 17.8 afflicted individu-
als and 1.1 hospitalizations (CDC
2013). Therefore we estimate that
adaptive inspections saved 71 infec-
tions and 4.4 hospitalizations over the
three-month period. Since the Las
Vegas health department performs
more than 35,000 inspections annual-
ly, nEmesis can prevent over 9126 cas-
es of foodborne illness and 557 hospi-
talizations in Las Vegas alone. This is
likely an underestimate as an adaptive
inspection can catch the restaurant
sooner than a normal inspection. Dur-
ing that time, the venue continues to
infect customers.

Adaptive inspections yield a number
of unexpected benefits. nEmesis alert-
ed SNHD to an unpermitted seafood
establishment. This business was
flagged by nEmesis because it uses a
comprehensive list of food venues
independent of the permit database.
An adaptive inspection also discovered
a food handler working while sick with
an influenza-like disease. Finally, we
observed a reduced amount of food-
borne illness complaints from the pub-
lic and subsequent investigations dur-
ing the experiment. Between January
2, 2015, and March 31, 2015, SNHD
performed 5 foodborne illness investi-
gations. During the same time frame
the previous year, SNHD performed 11
foodborne illness investigations. Over
the last 7 years, SNHD averaged 7.3
investigations during this three-month
time frame. It is likely that nEmesis
alerted the health district to food safe-
ty risks faster than traditional com-
plaint channels, prior to an outbreak.

Given the ambiguity of online data,
it may appear hopeless to identify
problematic restaurants fully automat-
ically. However, we demonstrate that

nEmesis uncovers significantly more
problematic restaurants than current
inspection processes. This work is the
first to directly validate disease predic-
tions made from social media data. To
date, all research on modeling public
health from online data measured
accuracy by correlating aggregate esti-
mates of the number of cases of dis-
ease based on online data and aggre-
gate estimates based on traditional
data sources (Grassly, Fraser, and Gar-
nett 2005; Brownstein, Wolfe, and
Mandl 2006; Ginsberg et al. 2008;
Golder and Macy 2011; Sadilek et al.
2013). By contrast, each prediction of
our model is verified by an inspection
following a well-founded professional
protocol. Furthermore, we evaluate
nEmesis in a controlled double-blind
experiment, where predictions are ver-
ified in the order of hours.

Finally, this study also showed that
social-media-driven inspections can
discover health violations that could
never be found by traditional proto-
cols, such as unlicensed venues. This
fact indicates that it may be possible to
adapt the nEmesis approach for iden-
tifying food safety problems in non-
commercial venues, ranging from
school picnics to private parties. Iden-
tifying possible sources of foodborne
illness among the public could sup-
port more targeted and effective food
safety awareness campaigns.

The success of this study has led the
Southern Nevada Health District to
win a CDC grant to support the fur-
ther development of nEmesis and its
permanent deployment statewide.
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The Direct Labor Management System (DLMS) (Rychty-
ckyj 1999) was initially developed and deployed in Ford
Motor Company’s North American assembly plants

back in the early 1990s. It was recognized that an ontology
and a reasoner were required to represent the complex
knowledge in the manufacturing process. This was done by
creating an implementation of the KL-ONE language using
the LISP programming language and developing a classifier
that could reason with the ontology. This implementation
turned out to be extremely successful and became the pro-
duction version as the system was expanded to assembly
plants first in Europe and then the rest of the world.
Throughout this, the KL-ONE architecture remained in place
as the ontology was expanded and maintained through thou-
sands of updates.

As the semantic web architecture and standards were
developed, it became obvious that the Global Study Process
Allocation System (GSPAS) KL-ONE ontology would be much
more usable and of better value to Ford if it could be rewrit-
ten into OWL/RDF. An ontology based on modern semantic
web standards would be much easier to maintain and could
be extended and utilized for other applications in the com-
pany. The main issue was in terms of time and resources:
GSPAS was a production system with high value to the busi-
ness customers and it was impossible to spare the people to
redo the ontology and keep the existing system in produc-
tion. An alternative solution was needed and Ford found it by
partnering with the Indian Institute of Technology Madras
(IITM) in Chennai, India. Ford elected to partner with IITM
because the university has an excellent reputation with a
strong background in artificial intelligence (Khemani 2013),
and moreover, Ford wanted to develop a strong relationship
with the university.

The results of this project were very successful. The IITM
team delivered a reengineered OWL/RDF ontology that con-
tained the knowledge in the existing KL-ONE ontology. The
Ford team validated and updated the ontology to meet Ford’s
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n For more than 25 years Ford Motor
Company has been utilizing an AI-
based system to manage process plan-
ning for vehicle assembly at its assem-
bly plants around the world. The scope
of the AI system, known originally as
the Direct Labor Management System
and now as the Global Study Process
Allocation System (GSPAS), has
increased over the years to include addi-
tional functionality on ergonomics and
powertrain assembly (engines and
transmission plants). The knowledge
about Ford’s manufacturing processes is
contained in an ontology originally
developed using the KL-ONE represen-
tation language and methodology. To
preserve the viability of the GSPAS
ontology and to make it easily usable
for other applications within Ford, we
needed to reengineer and convert the
KL-ONE ontology into a semantic web
OWL/RDF format. In this article, we
will discuss the process by which we
reengineered the existing GSPAS KL-
ONE ontology and deployed semantic
web technology in our application.



requirements and has deployed the lexical ontology
into the GSPAS application. In the rest of the article
we will describe the structure and usage of the exist-
ing KL-ONE ontology, and then describe the conver-
sion approach and the conversion process.

In this article, we refer to the GSPAS KL-ONE ontol-
ogy as GSPAS KB or as GSPAS ontology or as KL-ONE
ontology, and refer to the reengineered GSPAS OWL
ontology as new ontology or as OWL ontology.

GSPAS and the KL-ONE Ontology
Ford’s DLMS was developed to standardize vehicle
assembly, improve efficiency, and reduce cost
throughout the entire manufacturing process plan-
ning system. DLMS was then integrated into Ford’s
Global Study Process Allocation System, which is cur-
rently used across all of Ford’s global vehicle assem-
bly and powertrain plants.

Artificial intelligence in GSPAS is used for several
different purposes: (1) Validate the correctness of
process sheets that describe assembly operations. (2)

Develop a list of operator work instructions and asso-
ciated MODAPTS (modular arrangement of predeter-
mined time standards) codes (Sullivan, Carey, and
Farrell 2001) for each assembly operation in the
process sheet. (3) Check the process sheet for
ergonomic concerns. (4) Translate the process sheets
into the language used at a particular assembly plant.

Figure 1 shows the architecture of the GSPAS AI
application. Figure 2 shows a sample process sheet
with five build steps and two tool specifications; at
such granularity, thousands of process sheets are used
to document the build steps for a whole vehicle. The
core of the GSPAS AI application is an ontology that
contains relevant knowledge about Ford’s manufac-
turing processes including the labor requirements for
the assembly operations, part and tooling informa-
tion, workplace ergonomic concerns, linguistic rep-
resentation of Standard Language (Rychtyckyj 2006)
and other concepts. Figure 3 shows how this ontol-
ogy is used to generate operator work instructions
and MODAPTS codes. Each build step in the process
sheet is parsed and transformed into a KL-ONE
description, which is then classified to find the
matching concepts in GSPAS KB. The matching con-
cepts provide meaning to a build step and also sup-
ply the necessary work steps and MODAPTS codes.

The ontology was developed inhouse using the KL-
ONE knowledge representation language and
includes a graphic user interface for ontology editing
as well as a classifier. The GSPAS ontology has been
updated frequently to keep in sync with all of the
changes that have occurred to Ford and the automo-
bile industry in general. The automotive business has
evolved dramatically and Ford itself bought and then
sold off companies such as Jaguar, Land Rover, and
Volvo. The manufacturing process, technology, and
tooling have all changed dramatically over the last
few years, and all of these changes needed to be
reflected in the GSPAS ontology. Technology and
parts for new products like electric and hybrid-elec-
tric vehicles, in-vehicle infotainment, and aluminum
bodies all became part of the Ford manufacturing
process and consequently needed to be added into
Standard Language and the GSPAS ontology. On the
other hand, different concepts in the ontology
became obsolete and were no longer needed.
Throughout the intervening years and all of the
changes, the KL-ONE ontology model and classifier
proved to be robust enough to support GSPAS and
Ford’s manufacturing plants.

Ford adapted the KL-ONE knowledge representa-
tion system during its initial development of DLMS.
There were no KL-ONE tools or editors available so
Ford built both a KL-ONE editor as well as the code
for classification and reasoning (Rychtyckyj 1994).
The knowledge base update module, an in-house
developed graphic user interface, allowed us to main-
tain the KL-ONE knowledge base and also performed
error checking as part of the update process.
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Figure 1. GSPAS AI Application.
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Figure 2. Process Sheet.

TITLE: ASSEMBLE IMMERSION HEATER TO ENGINE

10 OBTAIN ENGINE BLOCK HEATER ASSEMBLY FROM STOCK
20 LOOSEN HEATER ASSEMBLY TURNSCREW USING POWER TOOL
30 APPLY GREASE TO RUBBER O-RING AND CORE OPENING
40 INSERT HEATER ASSEMBLY INTO RIGHT REAR CORE PLUG HOSE
50 ALIGN SCREW HEAD TO TOP OF HEATER

TOOL 20 1 P AAPTCA TSEQ RT ANGLE NUTRUNNER
TOOL 30 1 C COMM TSEQ GREASE BRUSH
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The KL-ONE knowledge representation system
(Brachman and Schmolze 1985) was first developed
in the late 1970s. KL-ONE was selected for use on the
DLMS project because of its adaptability as well as the
power of the KL-ONE classification algorithm (Lipkis
1981).

The KL-ONE knowledge base as used in DLMS can
be described as a network of concepts with the gen-
eral concepts being closer to the root of the tree and
the more specific concepts being the leaves of the
tree. A concept in a KL-ONE knowledge base inherits
attributes from the nodes that subsume it. The pow-
er of the KL-ONE system lies in the classification
scheme. The system will place a new concept into its
appropriate place in the taxonomy by utilizing the
subsumption relation on the concept’s attributes. A
detailed description of the KL-ONE classification
scheme can be found in the papers by Lipkis (1981)
and Schmolze and Lipkis (1983).

The existing KL-ONE ontology proved to be very
robust and flexible as Ford made hundreds of
changes to it on an annual basis. Both the business
and the technology changed dramatically, but Ford
managed to keep the system fully functional as its
scope increased. However, it also became obvious
that the KL-ONE framework was limiting the useful-
ness of the GSPAS ontology. It was difficult to extract
and share knowledge with other applications because
custom code was needed. The graphic user interface
was rewritten several times as the application migrat-
ed to new platforms, and maintaining it was time
consuming. In the meantime semantic web technol-
ogy had matured to a point where it was certainly
feasible to move into this space. We had previously
explored using an automated learning approach to
reengineer our KL-ONE ontology, but the results
showed that the new ontology was not as intuitive
and understandable to users and developers.

Reengineering GSPAS into OWL
The goal is to reengineer the GSPAS ontology into an
OWL ontology that will preserve the existing rela-
tions and links. This reengineering involves ontology
translation, which maps GSPAS ontology to an OWL
ontology, and ontology modeling, which identifies a
design for the OWL ontology while resolving some
of the issues in the existing design.

GSPAS to OWL translation follows a four-layered
translation model (Corcho and Gómez-Pérez 2005,
Euzenat 2001) consisting of lexical, syntactic, seman-
tic, and pragmatic levels. This model covers all
aspects of ontology translation, including semantics
preservation, which is a key requirement that is not
always easy to satisfy.

In this model, the lexical and syntactic levels deal
with the translation of characters, words, values,
strings, and sentences between knowledge represen-
tation (KR) languages. The semantic level deals with

KR framework translation and semantics preserva-
tion. The pragmatic level deals with the choice of
modeling and encoding that relates to scalability,
maintainability, and ontology usage. For example, an
entity can be modeled as a class (red as a class of col-
or) or as an individual (red is a color). And a binary
relation can be modeled as a subclass relation (obtain
as a class of verb) or as a role restriction (obtain has
part-of-speech some verb) or as a role assertion (obtain
has part-of-speech verb). The choice is between stor-
ing information in the taxonomy versus storing it in
role links. Further, one can find attach application
data to classes, individuals, or roles; and interpret it
before or after building the taxonomy.

As shown in figure 4, our approach to reengineer-
ing (modeling and translation) starts with the study
phase and works through three levels of abstraction,
namely, framework, design, and ontology levels, and
finally, ends with the validation phase. We follow a
spiral development model, which makes several iter-
ations through the various phases. The framework-
mapping and design phases incorporate the semantic
and pragmatic aspects from the four-layered model.
The ontology conversion tool implements, among
other things, the lexical and syntactic translations.
The remainder of this section describes the various
phases in figure 4.

Study Phase
In this phase, the goal is to study the GSPAS and
OWL (Bechhofer et al. 2004) frameworks and the
GSPAS ontology and further understand the reengi-
neering problem and identify areas that need
improvement.

To accomplish this goal, the IITM team studied the
GSPAS, KL-ONE, Description Logics (DL), and OWL

Figure 3. Ontology Use Cases.
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frameworks, and with the help of the Ford team ana-
lyzed the GSPAS ontology. Then the IITM team devel-
oped a document that presented (1) their under-
standing of the KR frameworks, (2) a potential
mapping between GSPAS and OWL, (3) their under-
standing of the design, organization, and use cases of
GSPAS ontology, and (4) a high-level approach to
GSPAS ontology reengineering.

The Ford team then reviewed the understanding
document and worked with the IITM team to vali-
date their understanding of the ontology and to
address the questions and fill in the blanks where
needed.

Framework Mapping
An ontology describes terms in a domain and cap-
tures their association with other terms in that
domain. A structure-preserving transformation maps
each term and its associations and subsumptions
from a source ontology to a term with corresponding
associations and subsumptions in a target ontology,
and thereby preserves the semantics of these terms.

GSPAS implements a subset of KL-ONE that satis-
fies Ford’s AI needs. We worked with this subset
instead of the full KL-ONE. Accordingly, the goal of
framework mapping is to create a semantics-preserv-
ing mapping between GSPAS (a subset of KL-ONE)
and OWL frameworks. This mapping is created for
each of vocabulary, representation, and reasoning
components of these frameworks.

Vocabulary
GSPAS, KL-ONE, DL, and OWL frameworks, though
related, were developed by different groups across
space and time. This naturally led to the use of dif-
ferent names to refer to a given idea. Table 1 docu-
ments the various vocabularies and their correspon-
dences. It also shows the GSPAS features (un)
sup ported in other frameworks.

Representation
To encode knowledge, the GSPAS ontology uses two
kinds of concepts (primitive and defined) and two
concept-forming operators (value-restriction and
conjunctions), further, it uses classifiable attributes
(roles) to define value restrictions, and two kinds of
nonclassifiable attributes (nondefinitional roles) to
store application data, where one is inherited by sub-
classes and the other is noninheritable. In KL-ONE
and so in GSPAS, a primitive-concept provides neces-
sary conditions for membership, whereas a defined-
concept provides both necessary and sufficient con-
ditions for membership. And a value restriction
restricts all fillers of a role to a given type or concept,
and allows us to describe concepts based on these
restrictions, like things whose tires are slick. Consider
the statement, Formula One car has slick tires. If this is
taken to provide a necessary condition about F1 cars
(a primitive concept) then it states that tires of F1 car
are slick tires. Instead, if it is taken to provide both
necessary and sufficient condition about F1 cars (a
defined concept) then it states that tires of F1 car are
slick tires, and things whose tires are slick are F1 cars. In
short, the GSPAS KR language permits the following:

A ⊑ C (primitive concepts);  A ≡ C (defined concepts)

where A is any concept name, and C is a concept
forming expression which can be a concept-name or
a value-restriction or a conjunction, as shown below.
Here A1, A2 are concept names, R is role name, and
C1, C2 are concept forming expressions.

C → A1 C → (∀R.A2 ⊓ ∃R)     C → C1 ⊓ C2

Using this notation, we can describe F1-Car as a prim-
itive concept: F1-Car ⊑ Car ⊓ (∀tire.Slick-Tire ⊓ ∃tire),
which states that F1-Car is a car and all its tires are
slick tires and has some tires. See how the textual
description resembles the expression.

For a lossless translation, we have to map the
GSPAS KR language to OWL constructs that will pre-
serve the meaning of domain terms and their sub-
sumptions. One such mapping (table 2) is discussed
next.

First, the primitive concepts are mapped to partial
concepts in OWL and are encoded as subclass
axioms. And defined concepts are mapped to com-
plete concepts in OWL and are encoded as class-
equivalence axioms. Further, concept names and
concept conjunctions are mapped, respectively, to
class names and class intersections in OWL. These
four mappings are exact.

Next, GSPAS roles are mapped to object properties.
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Figure 4. Ontology Reengineering.

The figure shows the current and end states of the ontology, the inputs to
reengineering (solid line), and the various phases and deliverables (dashed
line).

GSPAS
KL-ONE

GSPAS
Design

Test Cases

Framework
Mapping

(2)

Ontology
Design

(3)

Ontology
Conversion

(4)

Study

(1)

Validation

(5)

OWL-DL

New
Design

END STATECURRENT STATE

GSPAS OWL
Ontology

GSPAS OWL
Ontology

 



And nondefinitional attributes are mapped to anno-
tation properties. The inheritable nondefinitional
attributes (not supported in KL-ONE and OWL) are
modeled as annotation properties and the attribute
inheritance is handled in the application. These three
mappings are lossless, and the logical (roles and con-
cepts) versus nonlogical (annotation properties and
application data) separation remains intact.

Finally, GSPAS value restriction (∀R.A ⊓ ∃R), which
restricts all fillers of R to concept A, is remodeled as
existential restriction ∃R.A in the OWL ontology,
which restricts R to have some fillers from concept A
and, optionally, other fillers from other concepts. It is
our observation that, in the GSPAS ontology, con-
cepts that are best modeled using existential restric-
tion are modeled using value restriction.

Observe that (∀R.A ⊓ ∃R) is a subclass of ∃R.A, and
so, the existential restriction admits more models
than the corresponding value restriction. This is a
widening or relaxing transformation that preserves
subsumption structure (subclass or is-a relation). We

will justify this for both assertion and inference links.
Consider two value restrictions in figure 5, and

their translation given by is-a1 and is-a2. If is-a3 is
asserted in the GSPAS ontology then is-a4 will be
asserted during ontology conversion. By is-a3 and is-
a1 all individuals of (∀R.A2 ⊓ ∃R) will belong to ∃R.A1,
making is-a5 true. By similar argument, is-a2 and is-a4
also make is-a5 true. As a result, the asserted is-a4
agrees with the assertion is-a3 (figure 5).

The sufficient conditions for inferring is-a link
between a concept Sub and a concept Super is stated
in Lipkis (1981). Two of the relevant conditions are
(1) Each role of Super is modified by a role of Sub. (2)
Each value description of each role of Super subsumes
a value description of the corresponding role of Sub.
Accordingly, if A1 subsumes A2, then is-a3 will be
inferred, and correspondingly, is-a4 will be inferred
in OWL. Therefore is-a3 (be it an assertion or an infer-
ence) will have a corresponding is-a in the OWL
ontology, and thus subsumption links will be pre-
served.
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Table 1. Vocabulary Mapping.

 GSPAS KL-ONE DL OWL 

1 THING THING Top concept ‘T’ owl:Thing 

2 Concept Concept Concept Class 

3 Primitive Concept Primitive Concept Atomic Inclusion Partial Concept 

4 Generic Concept De!ned Concept De!nition Complete Concept 

5 Individual Individual Concept Individual Object 

6 Role Restriction Role Restriction Role Restriction Property Restriction 

7 Value Restriction Value Restriction Value Restriction Value Restricti 

8 Number Restriction Number Restriction Number Restriction Cardinality restriction 

9 Classi!able Attribute Role Role Object Property 

10 Nonde!nitional Attribute Nonde!nitional Role n/a Annotation Property 

11 Nonde!nitional Inheritable Attribute n/a n/a n/a 

12 Classi!er Classi!er Reasoner Reasoner 

Table 2. GSPAS KR Primitives (Modeling Elements) and Their OWL Translation.

*In DL expression, A is concept name; C, C1, C2 are concept forming expressions; R is role name.

 GSPAS KL-ONE DL* OWL 

1 Primitive Concept Primitive Concept A !  C rdfs:subClassOf 

2 Generic Concept De!ned Concept A "  C owl:equivalentClass 

3 Value Restriction (#R.A $  R) Value Restriction R.A owl:someValuesFrom 

4 Conjunction Conjunction C1 $  C2 owl:intersectionOf 

5 Classi!able Attribute Role Role owl:ObjectProperty 

6 Nonde!nitional Attribute Non-de!nitional Role n/a owl:AnnotationProperty 

7 Nonde!nitional Inheritable Attribute n/a n/a n/a 



Next, we offer three reasons for choosing existen-
tial restrictions over value restrictions: (1) Between
KL-ONE and OWL there is a paradigm shift. OWL
ontologies use variants of existential restriction to
model common use cases found in real-world ontolo-
gies. (2) It reduces the computational complexity of
the resulting ontology. (3) It tends to reduce the
number of base terms in the ontology. For example,
we can model car owners in two ways. First, using
value restriction a car owner is someone whose owns-
car role is filled only by cars (∀owns-car.Car ⊓ ∃owns-
car), and second, using existential restriction it is
someone whose owns role is filled with a car
(∃owns.Car). For ship owners, we get (∀owns-
ship.Ship ⊓ ∃owns-ship) and (∃owns.Ship), respec-
tively. The first model uses different roles to describe
different owner concepts, whereas the second model
uses just one role (owns) for that purpose.

In this section, we have presented a structure-pre-
serving mapping between GSPAS and OWL primi-
tives. Based on this mapping, the KR language of the
new OWL ontology is:

A ⊑ C A ≡ C
C → A1  C → ∃R.A2 C → C1 ⊓ C2

Reasoning
The GSPAS classifier, a derivative of the KL-ONE clas-
sifier (Lipkis 1981), uses structure matching to com-
pute subsumptions, whereas OWL reasoners use log-
ic-based tableau algorithms for this purpose. It is
known that structural subsumption is sound but
incomplete with respect to logical subsumption
(Baader et al. 2003); in fact, structure matching is
complete only for a small subset of OWL-DL (Khe-
mani 2013; Brachman and Levesque 2004); that is,
for a given knowledge base, logical subsumption will
find all inferences that structural subsumption can
find and possibly more. Moreover, the mapping from
GSPAS KR language to the new KR language preserves
subsumption links. Therefore, we conclude that each
subsumption link in the GSPAS ontology will have a
corresponding link in the OWL ontology. Further, a

GSPAS concept will be a subclass of the correspon-
ding OWL class.

Furthermore, the new OWL ontology allows
domain restriction, range restriction, and subroles:

domain(R) ⊑ A1 range(R) ⊑ A2 R ⊑ S

where R, S are role names, and A1, A2 are concept
names. Now, the profile of the new OWL ontology is
a subset of ℇℒ++ profile (Baader, Brandt, and Lutz
2008; Motik et al. 2012), which in turn is a subset of
OWL-DL profile. ℇℒ++ runs in polynomial time for
common reasoning tasks. We experimented with
other DL profiles and selected ℇℒ++ because it pro-
vides a good balance between expressiveness and per-
formance for the GSPAS ontology.

Ontology Design and Organization
The GSPAS ontology supports two use cases (figure 3):
to parse build-steps written in Standard Language,
and to interpret parsed build steps. As a result, there
are two sets of terms in the ontology — one that
describes words in the Standard Language and the
other that describes build steps, parts, tools, and so
on. All terms reside in a common namespace, and a
term is identified by its name (label).

Ontology Organization
Each term (concept, individual, role, or attribute) in
the new ontology is assigned a namespace, a label,
and a unique identifier. The unique identifier1 is gen-
erated from the namespace2 and label. Namespaces
have a hierarchical structure, which allows top-down
organization of the ontology to arbitrary depth.

The new ontology is divided into subject areas,
namely, language and manufacturing. Each subject
area is divided into smaller areas (like verbs, parts,
tools, and others), and so on to arbitrary depth. One
or more namespaces are used to organize a subject
area. Figure 6 shows the differences between the
GSPAS ontology and the new ontology.

Ontology Design
The various concept types, role types, and modeling
choices (like entity as concept versus individual,
binary relation as subclass-relation versus role versus
annotation property,  and others) and the various
hierarchies (lexical hierarchy, operations, parts, tools,
and others) in the GSPAS ontology are mostly stable
and are retained as such in the new ontology. We
reused the working parts of the design and remodeled
only the problematic cases. Here, we describe how
the new ontology models three interesting problems:
homonyms (one-spelling, many-meanings), syn-
onyms (many-spellings, one-meaning), and part-of-
speech information.

Homonyms
Terms in the GSPAS ontology reside in a single name-
space, and a term is identified by its name (label). As
a result, a term like HAMMER that occurs as a lexical
term, a tool, and an operation will have a single rep-
resentation overloaded with three meanings. Such
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Figure 5. Translation of Value Restriction.
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terms will cause interleaving of unrelated hierarchies
and produce spurious inferences. For example, given
that HAMMER is a TOOL and HAMMER is also an
OPERATION, if POWER-HAMMER is a HAMMER,
then POWER-HAMMER becomes a TOOL as well as
an OPERATION. The latter inference is spurious.

Homonyms can cause incorrect descriptions; for
example, a concept can be either primitive or defined;
if HAMMER as a tool is a primitive concept, and as an
operation it is a defined concept, then choosing either
type will lead to incorrect description.

Homonyms can also cause punning. OWL-DL
requires the identifiers of objects, classes, and prop-
erties to be mutually disjoint. Punning is the result of
violating this constraint. For example, prepositions
like USING and WITH occur as concepts in the lan-
guage ontology and as properties in the manufactur-
ing ontology.

The new ontology adopts the one term, one mean-
ing (OOM) principle, where a new term will carry
only one meaning. Therefore, each sense of a homo-
nym will be independently represented. Thus, HAM-
MER will split into three terms, each with a single
meaning and a distinct namespace.

lex:HAMMER   opr:HAMMER   tool:HAMMER

This solves the homonym problem. Now, homonyms
will have matching labels but different IRIs and will
not cause spurious inferences.

Synonyms
In the GSPAS ontology, name variations (like syn-
onyms, acronyms, abbreviations, misspellings,
regional variations, names given by external sources,
and others) are treated as synonyms (call them GSPAS
synonyms). GSPAS synonyms are stored as data val-
ues in the associated term and so the classifier does
not process them. The same approach is used in the
new ontology where GSPAS synonyms are stored in
OWL annotation property. Next, we present an alter-
native approach and give reasons for rejecting it.

GSPAS synonyms of classes and objects can be
modeled using the predefined properties owl:equiva-
lentClass and owl:sameAs, respectively. Now, GSPAS
synonyms become logical terms and the classifier will
process them. This has some side effects. First, we
cannot tell apart a term and its synonym because
both are first-class terms; this is not wrong, but the
synonym relation goes out of sight. Second, the syn-
onym relation is neither symmetric nor transitive,
but owl:equivalentClass and owl:sameAs are both
symmetric and transitive and so will induce spurious
synonym relationships. Third, the GSPAS synonyms
become new terms and may cause homonym prob-
lems. This can be solved at the expense of introduc-
ing spurious homonyms (matching labels but differ-
ent IRIs). For these reasons we reject this approach
and treat synonyms as data values.

Part-of-Speech Information
In GSPAS ontology, part-of-speech (POS) information

is modeled in two ways: POS tags (like noun, verb,
and others) appear as concepts in the taxonomy (so
words in Standard Language can specialize them),
and POS tags are stored as data values in a nondefin-
itional attribute. In the new ontology, we model POS
tags as concepts in the taxonomy. The tags stored in
the attributes are remodeled into the taxonomy by
creating suitable POS concepts and subsumption
links.

Ontology Conversion
HAMMER has three senses: As an OPERATION it
operates on an OBJECT restricted to HAMMERABLE
type, and as a TOOL its SIZE is restricted to HAM-
MER-SIZE. In the interest of space we will ignore the
lexical sense of HAMMER. 

HAMMER ⊑ OPERATION ⊓ TOOL ⊓
(∀OBJECT.HAMMERABLE ⊓ ∃OBJECT) ⊓
(∀SIZE.HAMMER-SIZE ⊓ ∃SIZE)

Conceptually, ontology conversion takes a GSPAS
term description and creates one or more new
descriptions after resolving homonyms and imple-
menting the various design choices. For the case of
hammer, our goal is to split its description into two
new descriptions:

HAMMERopr ⊑ OPERATIONopr ⊓∃OBJECTopr.HAMMERABLEobj
HAMMERtool ⊑ TOOLtool ⊓∃SIZEtool.HAMMER-SIZEtool

where each new term is assigned a single namespace
that is denoted by its subscript, the left side of a
description is a name, and the right side is an expres-
sion that refers to other term descriptions in the
ontology.

Technically, the GSPAS ontology conversion
reduces to the problem of assigning one or more
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Figure 6. Reengineered Ontology.
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namespaces to each name in a description and then
extracting new descriptions. The description of
HAMMER after namespace assignment is shown
below; from this, HAMMERopr and HAMMERtool will
be extracted after resolving namespace  ambiguity.

HAMMERopr,tool ⊑ OPERATIONopr,lex ⊓ TOOLtool,lex⊓
(∀OBJECTopr.HAMMERABLEobj ⊓ ∃OBJECTopr) ⊓

(∀SIZEtool.HAMMER-SIZEtool ⊓ ∃SIZEtool)

In the presence of namespace ambiguity, ontology
conversion becomes an inverse problem and so it has
several solutions. The corresponding forward prob-
lem is to recover the GSPAS ontology from the new
ontology, that is, drop the namespaces and merge the
descriptions. The conversion is lossless if the GSPAS
ontology can be fully recovered from the new ontol-
ogy. To choose the correct description of HAMMERo-

pr and HAMMERtool, we need a set of rules, also called
choice functions, that will depend on the list of
homonyms, list of namespaces, and the organization
of GSPAS ontology.

In what follows, we describe the conversion
process (figure 7) with the help of term-mapping
functions and choice functions. In figure 7, parent
denotes a named parent concept, role denotes a role
name, and filler denotes a value restriction (which is
a concept name). For the concept HAMMER, parents
are {OPERATION, TOOL}, roles are {OBJECT, SIZE},
and filler of OBJECT is {HAMMERABLE}. The term-
mapping functions track the link between GSPAS
terms and new terms: tof (target-of) maps a GSPAS

term to a set of new terms, and sof (source-of) maps a
new term to a GSPAS term.

tof(HAMMER) = {HAMMERopr, HAMMERtool}
sof(HAMMERopr) = HAMMER

The choice functions are used to resolve homonyms
and select admissible terms. Given a new concept,
chooseP takes candidate parents and returns the
admissible parents; similarly, chooseR takes candidate
roles and returns the admissible roles, and further,
chooseF returns the admissible fillers for a new con-
cept-role pair. Given HAMMERopr, chooseP takes
{OPERATIONopr, OPERATIONlex} and returns {OPER-
ATIONopr}, similarly, chooseR takes {OBJECTopr, SIZE-

tool} and returns {OBJECTopr}. Given HAMMERopr and
OBJECTopr, chooseF takes {HAMMERABLEobj} and
returns {HAMMERABLEobj}.

Ontology conversion creates new descriptions by
making several passes over the GSPAS ontology: (Step
A) it first creates new terms, with empty descriptions,
(Step B) then adds parents to the newly created terms,
(Step C) then adds roles, (Step D) and finally role
fillers (value restrictions). (See Listing 1.) 

Step A.
To create a new term we need a namespace and a
label. First, we identify the namespaces of the new
ontology then we assign GSPAS terms to namespaces.
Homonyms will show up in multiple namespaces.
Now, we create one new term for each GSPAS term
and its namespace combination, and we track this
association using sof and tof functions (listing one).
At this point we will have new terms with empty
descriptions; each new term will link to one GSPAS
term, and each GSPAS term will link to one or more
new terms. Use sof and tof to complete the rest of the
conversion process.

Step B.
To populate new parents, follow the edges 1, 2, 3, 4
in figure 7. For each new concept and its GSPAS par-
ent, fetch the candidate parents, if a GSPAS parent is
a homonym, it will return multiple candidates. Now,
select the admissible parents and add them to the
new concept (listing one).
Step C.
To populate new roles, follow the edges 1, 5, 6, 7 in
figure 7. For each new concept and its GSPAS role,
fetch the candidate roles, which will be a singleton
set because GSPAS roles have only one meaning.
Now, select the admissible role, and add it to the new
concept (listing one). Now, populate attributes in a
similar manner.

Step D.
To populate role fillers, continue from the previous
step and follow the edges 8, 9, 10 in figure 7. For a
GSPAS role and its GSPAS filler, fetch the candidate
fillers. Now, select the admissible fillers, and add it to
the new role in new concept (listing one). Add select-
ed fillers to new concept. Now populate attribute
fillers in a similar manner.
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At the end of step D, all term descriptions are com-
plete and we have a reengineered namespace-aware
ontology that is ready for lexical and syntactic trans-
lation.

In the conversion process, namespace assignment
and the choice functions are two important decision
points, and the remaining is routine processing. The
choice functions use a set of cascading rules to dis-
ambiguate terms. Given a concept and a set of can-
didate parents, chooseP returns the parents from the
concept’s namespace; otherwise it returns the parents
that have a preference to children from the concept’s
namespace, and otherwise it returns the candidate
set.

For each role, its namespace and the namespaces
in which it can be used are determined during the
design phase. Also, its domain and range are prede-
termined. Given a concept and a candidate role,
chooseR returns the role if it is admissible in that con-
cept’s namespace.

Given a concept, a role, and a set of candidate
fillers, chooseF filters the candidate list progressively
until only one candidate is left. First, it selects fillers
that are subtypes of the role’s range, next it selects
fillers from the concept’s namespace, and finally it
selects fillers from the role range’s namespace.

The choice functions and their rules were deter-
mined by profiling the GSPAS ontology and by exper-
imentation. These rules are specific to GSPAS ontol-
ogy, its design and organization, and the choice of
namespaces and homonyms. These rules were tuned
to the ontology instance that was used for final con-
version and testing.

Verification
Verification is done at three levels: framework level,
ontology level, and application level.

At the framework level, (1) we verified the correct-
ness of framework mapping (table 2) by first compar-
ing the asserted hierarchies of the new and GSPAS
ontologies, and then by comparing the respective
inferred hierarchies. The new asserted hierarchy had
four missing subsumption links (out of 12,600+
direct links); these were manually added to the OWL
ontology. Next, we manually compared the inferred
hierarchies; most of the hierarchy matched; there
were about 20 cases where a subconcept became
equivalent to its parent. These cases were manually
corrected in the new ontology. (2) Further, we veri-
fied the profile of the new ontology. We used Pellet
info tool to compute OWL and DL profiles of the new
ontology. It turned out to be OWL 2 EL and ℇℒ++ (see
table 4) as expected.

At the ontology level, (1) we verify that every
GSPAS term has a representation in the new ontology
and that every new term description is part of some
GSPAS term description. This is done by a reverse
transformation from the new ontology to GSPAS
ontology, by dropping the namespaces and merging

terms. We manually compared the two versions of
GSPAS ontology and found no significant differ-
ences. This verification alone does not establish the
validity of the new ontology, but checks whether the
conversion is lossless. It is a good first line of defense
and helps in accounting for terms in the new ontol-
ogy. (2) Further, we checked for the case of punning
using the Pellet lint tool, and found one violation,
which was fixed manually.

The application-level verification provides the
final validation of the new ontology. It is discussed
in the Deployment and Maintenance section.

Performance Testing
In the GSPAS ontology, all terms are modeled as con-
cepts, but primitive concepts that occur as leaves in
the taxonomy, and without any role restriction,
qualify as individuals. To explore alternate models of
GSPAS ontology, qualifying individuals in the part-
of-speech hierarchy and object hierarchy were mod-
eled as individuals.

We created five OWL ontologies from GSPAS
ontology (see table 3). Each differs in the number of
individuals it models. (1) LEX1 is the language ontol-
ogy where leaves are individuals. (2) ONT1 is the full
ontology where all terms are concepts. (3) ONT2 is
ONT1 with lexical leaves as individuals. (4) ONT3 is
ONT2 with object leaves as individuals. (5) ONT4 is

Articles

SPRING 2017   57

Listing 1.

  // Step A: Create new terms. 
1  for each ns in Namespaces 
2     ns-terms = identify all terms that belong to ns 
3     for each term in ns-terms 
4        n-term = create-new-term(ns, term) 
5       sof (n-term) = term 
6       tof (term) = tof(term) ⋃ {n-term} 
 
  // Step B: Populate new parents. 
7  for each n-concept 
8     concept = sof(n-concept)       // 1 
9     for each parent of concept      // 2 
10        candidates = tof(parent)     // 3 
11        n-parents = chooseP(candidates)     // 4 
12        add n-parents to n-concept 
 
   // Step C: Populate new roles. 
13   for each n-concept 
14      concept = sof(n-concept)       // 1 
15      for each role of concept       // 5 
16         candidates = tof(role)        // 6 
17         n-role = chooseR(candidates)    // 7 
18         add n-role to n-concept 
 
   // Step D: Populate new !llers. 
19   for each !ller of role          // 8 
20      candidates = tof(!ller)         // 9 
21      n-!llers = chooseF(candidates)      // 10 
22      add n-!llers to n-role of n-concept 



ONT2 with nominals rolled back to concepts. The
first four cases were created for performance testing,
The fifth one was the result of performance tuning.

We tested three reasoners (FacT++ v1.6.3, Pellet
v2.2.0, and HermiT v1.3.8.) on the five ontologies
using Protégé v4.3.0 on Intel i7-4770 with 16 GB
RAM running 64-bit Ubuntu 12.04. The execution
times are given in table 4. We make the following
observations: (1) Of the reasoners, FacT++ has the
best overall performance, followed by HermiT and
Pellet. (2) Of the ontologies, LEX1 has the best over-
all performance, it has a 1:21 class to individual ratio;
and ONT1 has good overall performance and has no
individuals. (3) The performance, though within
acceptable limits, begins to degrade for ONT2 and
ONT3. HermiT and Pellet are up to two orders of mag-
nitude slower than FacT++ for these ontologies.

To understand where the reasoner was spending
time, we profiled ONT3 using Pellet3 and computed
the classification time for each concept. Using this, a
Pareto  chart was prepared; see figure 8. Observe that
96 percent of the reasoner’s time is spent in classify-
ing 20 percent of the terms.

We analyzed these terms and found that most of
these had owl:hasValue restriction in its definition.
To verify the impact of owl:hasValue on performance,
we created ONT4 from ONT2 by changing fillers of
owl:hasValue into concepts and rewriting owl:has-
Value as existential restriction. Now, ONT4 outper-
forms ONT2 and ONT3, and has a comparable per-
formance to ONT1 (table 4).

From this we conclude that creation of individuals
has less impact on performance, as seen in LEX1, but
using them in owl:hasValue restriction degrades per-
formance, as seen in ONT2, ONT3. This is true for Her-
miT and Pellet. In our test, FacT++ consistently out-
performs HermiT and Pellet, and for our ontology
FacT++ is unaffected by nominals.

This performance test is solely based on execution
time. We did not compare the inferences from these
reasoners, so we do not know if there is any qualita-
tive difference in the inferences from these reasoners.

Deployment and Maintenance
We (Ford) verified the completeness of the new OWL
ontology by developing a tool to compare it to the
KL-ONE version. The delivered OWL ontology need-
ed to be validated and verified as the first step toward
deployment. This process consisted of several steps.
Initially, the OWL ontology was loaded into an Alle-
grograph server and we wrote various SPARQL queries
to determine if the results returned were as expected.
In cases where the results were not satisfactory, we
then examined the ontology and made modifications
if they were required. This manual validation went
on for a period of several weeks until we were certain
that the OWL ontology was complete and usable.

The next phase of the validation process utilized
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Table 3. Ontology Test Cases.

Case Individuals Individuals Classes 

LEX1 lex leaves 6,780 317 

ONT1 none       0 12,815 

ONT2 lex leaves 5,679 7,136 

ONT3 lex and obj leaves 6,898 5,917 

ONT4 lex leaves minus nominals 5,136 7,679 

Table 4. Classification Time (in Seconds).

In DL profile, AL stands for attributive language, E for existential restriction,
H for subrole, and O for nominals.

 Language Pro!le Classi!cation Time 

Case OWL DL* FacT++ HermiT Pellet 

LEX1 OWL 2 EL AL 0.2 0.8 0.7 

ONT1 OWL 2 EL ALEH 1.6 12 4 

ONT2 OWL 2 EL ALEHO 2.3 74 564 

ONT3 OWL 2 EL ALEHO 2.7 352 716 

ONT4 OWL 2 EL ALEH 1.7 13 4 
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an automated set of regression tests
that were run against the new OWL
ontology. This is a set of more than
1000 use cases that access the OWL
ontology to parse and process the
assembly build instructions. In this
case, we replaced the KL-ONE ontology
with the OWL ontology and ran the
entire suite of regression tests and
compared the results with the baseline.
As with the manual tests we found a
number of differences that needed to
be analyzed and addressed. These dif-
ferences fell into the following cate-
gories. First, OWL representation was
different than KL-ONE but was part of
the reengineering process. In this case
we adjusted the regression tests to
reflect how the knowledge was repre-
sented in OWL. Second, discrepancies
were caused because of formatting,
punctuation, special characters, and
related syntax errors. In these cases, we
wrote a routine that would fix these
errors as part of the OWL retrieval
process, but our intention is to go back
and fix these in OWL. Third, in some
cases, the OWL representation was not
what we wanted. In this case we went
back to OWL and made the appropri-
ate fixes.

At this point we were confident that
the lexical ontology was fairly com-
plete and would be usable after the

changes made above were completed.
The next step was to build an image

using the new OWL ontology and
deploy it for user acceptance testing.
This testing pointed out some per-
formance issues that were addressed by
rewriting the code to make the OWL
interface work more efficiently. After
these performance issues were fixed
the new AI system with the OWL
ontology was deployed into the testing
environment. No other major issues
were discovered during the user-accep-
tance testing phase and the application
with the embedded lexical OWL ontol-
ogy was deployed for use.

We were able to take advantage of
the extensibility of the OWL ontology
by developing a script that could load
a class of parts known as wire assem-
blies directly from an external data-
base. This allows us to add additional
knowledge into OWL much more
quickly. Another of the main advan-
tages of using OWL was the capability
to use standard tools for ontology
maintenance such as Top Braid Com-
poser, which provides additional capa-
bility. The OWL/RDF system has
proven to be easier to maintain and
utilize for reusing knowledge.

The OWL ontology is also available
for use through Allegrograph and is
being utilized by other applications
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Figure 9. Ford Semantic Web Framework.
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that need the information. Figure 9
shows the structure of our semantic
web architecture.

Conclusions and 
Future Steps

In this article we described a project
where Ford collaborated with the Indi-
an Institute of Technology Madras to
reengineer and convert an existing
ontology into a semantic web
OWL/RDF architecture. There were a
number of compelling reasons that
motivated the reengineering of the
ontology from KL-ONE to OWL. The
most important ones were based on
maintainability and extensibility. The
original software was written before any
software tools for ontology mainte-
nance were available. The KL-ONE
ontology could only be maintained
using a specialized tool. This tool had to
be rewritten several times as operating
systems and hardware were being
upgraded, and it was becoming a bot-
tleneck for future ontology develop-
ment. It was extremely tedious and
time consuming to manually create
reports and to extract knowledge from
the KL-ONE ontology. In the meantime
business requirements for the ontology
were rapidly increasing and the existing
architecture could not support them.
The conversion of the ontology to OWL
was a critical requirement for the future
usage of the AI application. Our experi-
ence was somewhat unique in that we
have been using KL-ONE since the
1990s and much of the work in seman-
tic web had taken place after we had a
deployed application.

The conversion from KL-ONE to
OWL required a significant amount of
work, but the advantages from moving
into a semantic web architecture made
this a worthwhile investment. It
enables us to take advantage of exist-
ing tools and processes and to make
our ontology reusable and extensible
using existing standards. Queries can
easily be developed using SPARQL,
which allow other applications to
access our ontology.

The semantic web infrastructure also
gives us the capability to link to other
ontologies and take advantage of the
linked open data world. Therefore, the
return on investment for this project
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includes a number of benefits that will
pay dividends in the future. The stan-
dards and tools built around semantic
technologies make our ontology easily
accessible to other applications and will
reduce future expenses in terms of
maintenance and development costs.
In addition, this project has helped us
build the infrastructure needed to sup-
port semantic technology and allow for
the development of other projects that
could benefit from the semantic web.

Our future work will include the
deployment of other ontologies into
production as well as the use of seman-
tic web tools and semantic web archi-
tecture for ontology development and
maintenance. However, the real bene-
fit will occur as we leverage semantic
technology across other areas of the
company and integrate this into our
development and manufacturing
processes.

Notes
1. International Resource Identifier (IRI).

2. International Resource Identifier (IRI).

3. In Pellet, concept classification is done
by a series of subsumption tests. Pellet
reports the execution time for each test,
and we sum up these times to compute
the classification time for a concept.
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Imaging techniques are a key tool in the diagnosis of dis-
ease. X-rays, ultrasound, CAT, and PET scans are now rou-
tinely used as a preliminary step to determine the extent

of a disease and the need for and type of treatment (Tearney
et al. 2006). These techniques generate vast quantities of
data. The images that are produced must typically be ana-
lyzed by trained clinicians. This is extremely labor intensive,
expensive, and can be prone to error. Thus, there is a need
for, and an opportunity to, improve the quality of health-
care systems by developing automated aids to assist in this
process. Given the patient-critical outcomes of the image-
analysis process, a human analyst must always remain in the
loop. However, it may be possible to reduce the labor
involved, and thereby the costs to the patient, using such sys-
tems. Further, a well-designed system may also reduce errors,
potentially saving lives.

There are rarely well-defined, crisp guidelines that can be
used, for example, to separate healthy tissue from diseased.
Therefore, such image analysis tasks are often formulated as
machine-learning problems. Here, a collection of images
annotated by experts is used as data to train a classifier, which
is then used to help annotate a new image. Typically, this sys-
tem will present a rank-ordered list of image regions to the
human analyst for verification or correction.

In our work, we focus on image analysis for coronary artery
disease (CAD). This is a leading cause of death worldwide. An
estimated 17.5 million people died from a cardiovascular dis-
ease in 2012, representing 31 percent of all global deaths. Of
these deaths, an estimated 7.4 million were due to coronary
heart disease and 6.7 million were due to stroke (Mendis, Pus-
ka, and Norrving 2011). Although this is such a common dis-
ease, the underlying causes are quite complex, and it is only
recently that an imaging technique that can help identify the
disease mechanism clearly has been developed. This tech-
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n An estimated 17.5 million people
died from a cardiovascular disease in
2012, representing 31 percent of all
global deaths. Most acute coronary
events result from rupture of the protec-
tive fibrous cap overlying an atheroscle-
rotic plaque. The task of early identifi-
cation of plaque types that can
potentially rupture is, therefore, of great
importance. The state-of-the-art
approach to imaging blood vessels is
intravascular optical coherence tomog-
raphy (IVOCT). However, currently, this
is an offline approach where the images
are first collected and then manually
analyzed an image at a time to identify
regions at risk of thrombosis. This
process is extremely laborious, time con-
suming, and prone to human error. We
are building a system that, when com-
plete, will provide interactive three-
dimensional visualization of a blood
vessel as an IVOCT is in progress. The
visualization will highlight different
plaque types and enable quick identifi-
cation of regions at risk. In this article,
we describe our approach, focusing on
machine-learning methods that are a
key enabling technology. Our empirical
results using real OCT data show that
our approach can identify different
plaque types efficiently with high accu-
racy across multiple patients.



nique is called intravascular optical coherence
tomography (IVOCT). In the following sections, we
describe in detail CAD, the prior state of the art in
imaging for CAD, and the IVOCT technique. 

Like many other imaging techniques, a major issue
with IVOCT is that it can produce more than 500
images in a single scan, resulting in an explosion of
image data. This can be difficult and labor intensive
to analyze manually, taking up to one hour of exam-
ination for each image by a trained analyst, of which
there are not many, given the recency of the tech-
nique (Lu et al. 2012). This often precludes measure-
ments from every frame, and plaque classification is
not done because it is infeasible in terms of time. Fur-
ther, this manual process is also prone to error. In pri-
or work (Lu et al. 2012), our group has found evi-
dence of up to 5 percent intra- and 6 percent
inter-rater variability among analysts looking at these
images. 

The goal of our work is to enable an effective detec-
tion and diagnosis of CAD, which is a necessary pre-
cursor for effective treatment. We aim to build a tool
to do this in three ways: (1) reduce the effort
involved, (2) improve the accuracy of disease mech-
anism identification, and (3) make the diagnosis
available as early in the process as possible. The
prevalence of CAD means achieving these goals can
have a major impact on health worldwide. 

We anticipate fulfilling our goals in two steps. In
the first step, reported in this article, we develop an
automated method to process a single image gener-
ated by IVOCT scans. We demonstrate that it is accu-
rate and efficient on real IVOCT data and that ana-
lysts can use the output to greatly reduce their
annotation effort. In the second step, our goal is to
integrate this approach into a real-time visualization
that accompanies an IVOCT scan. These images will
be annotated with different detected plaque types
and will be used for rapid identification of high-risk
regions for intervention, management and guidance.

Cardiovascular Artery Disease (CAD)
In this section, we discuss CAD and the state of the
art in its diagnosis and treatment.

The underlying disease process in the blood vessels
that results in coronary heart disease (heart attack) is
known as atherosclerosis. For many years, it was
thought that the main cause of a heart attack was the
buildup of fatty plaque within an artery leading to
the heart. With time, the plaque buildup would nar-
row the artery so much that the artery would either
close off or become clogged by a blood clot (steno-
sis). The lack of oxygen-rich blood to the heart would
then lead to a heart attack. However, these types of
blockages cause only about 3 out of 10 heart attacks
(Virmani et al. 2000). 

Researchers are now finding that many people
who have heart attacks do not have arteries severely

narrowed by plaque (Falk 1983). In fact, vulnerable
plaque may be buried inside the artery wall and may
not always bulge out and block the blood flow
through the artery. This is why researchers began to
look for, potentially, a different cause. What they
found was that a thin protective fibrous cap (FC)
overlying an atherosclerotic plaque (lipid pool) may
rupture, triggering the formation of a blood clot,
which may eventually lead to an acute event such as
heart attack. 

Current state-of-the-art treatment of the disease
focuses on blood vessel narrowing by means of per-
cutaneous interventions (PCIs). PCI is a procedure
that uses a catheter (a thin flexible tube) to place a
“stent” to open up blood vessels in the heart that
have been narrowed by plaque buildup (stenosis). A
stent is a flexible tube that reinforces the blood ves-
sel wall. This needs significant imaging support to
determine how, where, or even if it should be done.
For example, the presence of significant calcification
in the vessel may prevent the stent from being
placed or from functioning as intended, triggering
additional procedures to remove the calcium or
aborting the procedure. On the other hand, if there
is a lipid pool that may rupture, a physician can
extend a stent to seal off the affected area or at least
avoid placing the stent edge in a lipid region, an
occurrence that raises the risk of a tear or damage to
the inner wall or lining of an artery. These examples
highlight the need for a reliable imaging technique
with suitable resolution to identify plaque at high
resolution (for example, thickness of vulnerable
fibrous cap <<65 μm).

The current standard intravascular imaging modal-
ity is intravascular ultrasound (IVUS). IVUS is a med-
ical imaging methodology that uses a catheter with a
miniaturized ultrasound probe attached to the distal
end of the catheter. The proximal end of the catheter
is attached to an ultrasound device. The IVUS
machine produces a detailed cross-sectional image of
the vessel wall and plaque as a gray level intensity
image. An example of the IVUS two-dimensional
(2D) cross-sectional image is shown in figure 1,
which shows the plaque and vessel wall from which
the ultrasound wave bounces off.

When analyzing the 2D image generated by the
IVUS machine, it is possible to quantify, limited to
the IVUS resolution, the lipid plaque and the fibrous
plaque. However, quantification of the total amount
of vessel calcification by IVUS is problematic in that
its resolution is low and it cannot measure the dis-
tance between the superficial calcium and the vessel
boundary, nor can it assess the thickness of calcium
(Mintz et al. 1995). 

Intravascular Optical Coherence
Tomography (IVOCT)

In this section, we introduce IVOCT and describe its
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advantages relative to IVUS. Intravascular optical
coherence tomography uses the same concept of
imaging, only it uses light instead of ultrasound
waves. The underlying concept of OCT is similar to
that of ultrasound; by measuring the delay time of
optical echoes reflected or back scattered from sub-
surface structures in tissues, we can obtain structural
information as a function of depth within the tissue
(Tearney et al. 2012). 

In IVOCT, we obtain cross-sectional images by
inserting a flexible imaging probe (catheter) into the
blood vessel to be imaged. The catheter has an opti-
cal fiber coupled to a lens and microprism. The
microprism reflects the OCT beam perpendicular to

the catheter’s longitudinal direction and captures the
light that is back scattered from that tissue (the
reflected beam is referred to as an A-Line, figure 2a).
The probe is then rotated and pulled back. This pull-
back creates a two-dimensional image (referred to as
polar or r-θ image) by assembling successive A-lines
next to each other resulting in an image shown in fig-
ure 2b. This image is then transformed to Cartesian
coordinates to produce the image shown in figure 2c.
A typical pullback contains 271 images covering 54
mm and an image contains 504 A-lines.

Different tissues have different qualities that influ-
ence the back reflectance. The longer the distance
traveled, the longer the delay in returning to a detec-

Figure 1. Intravascular Ultrasound Image. 

Lumen

Catheter

Dark
shadow due
to calci�ed

plaque

Dark
shadow due
to calci�ed

plaque



tor. The delay in the returning light from deeper
structures compared with shallow structures is used
to reconstruct images.

Since its approval for clinical use, IVOCT has
become an invaluable tool for vascular assessments
due to its high contrast and microscopic resolution
(5–15 μm), which is superior to other in vivo imaging
modalities such as IVUS. To exemplify the difference
in the output of IVUS and IVOCT, we show in figure
3 what a calcified cross section might look like using
both modalities.

A key advantage of IVOCT over IVUS is that it is
able to distinguish key types of plaque (Yabushita et
al. 2002) and aid in assessment of new coronary
artery stent design (Lu et al. 2012, Wang 2012).  This
is important because the presence of calcium is the
strongest factor affecting “stent expansion,” a well-
documented metric for clinical outcome (Fujimoto,
Nakamura, and Yokoi 2012; Nishida et al. 2013).
IVOCT provides the location, circumferential extent,
and thickness of calcium. Second, there can be a geo-
graphic miss, where the stent either misses the lesion
along its length or is improperly expanded, affecting
its ability to stabilize the lesion and/or provide appro-
priate drug dosage. This has a well-documented
impact on recurrence of narrowing (Costa et al.
2008). Plaque dissections at the edge of a stent (when
a stent’s length does not fully cover the plaque along
the vessel) clearly visible in IVOCT were detected by
angiography in only 16 percent of cases (Chamie et
al. 2013). Edge dissection (that is, when the edge of
the stent lies on top of a plaque) happens almost
exclusively in areas where the calcium/lipid plaque is
not evenly distributed around the lumen circumfer-
ence (Chamie et al. 2013), characteristics only avail-
able with intravascular imaging. Under IVOCT guid-
ance, one can use a longer stent or apply a second
stent to reduce effects of this geographic miss. Third,
plaque sealing is the treatment of a lesion that may
appear vulnerable and may rupture, under intravas-
cular imaging. Because approximately 50 percent of
coronary events after stenting happen at these
remote, nonstented sites, plaque sealing is an attrac-
tive concept under investigation in trials. IVOCT’s
high sensitivity for lipid plaque will be advantageous
for guidance of plaque sealing.

For the reasons mentioned, we focus on analyzing
IVOCT images for CAD. Next, we describe how we
represent these images in order to train a classifier
from them, followed by a detailed experimental eval-
uation. 

Representing an IVOCT Image
In order to build our system, we need to identify dif-
ferent plaque types in IVOCT images automatically
and accurately. In this section, we describe image
characteristics that are key to identifying different
plaque types. In constructing our features we use the
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Figure 2. Intravascular OCT Image Generation Process

a) Back-scattered intensity of a single A-line. (b) Polar (r-θ) image (the red
line is the A-line in a). (c) The polar image converted to the more human
readable x-y. 
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qualitative description of the different plaques’ char-
acteristics in prior work (Yabushita et al. 2002)
described below. This also provides the ability to
interpret results in a meaningful way.

A fibrous plaque (figure 4a) has high back scattering
and the region has relatively homogeneous intensity
values. We see that the average intensity is high
(bright). Likewise, the intensity is not attenuated
much along the A-line (Gargesha et al. 2015).

A lipid plaque (figure 4b) is a low-intensity region
with poorly delineated borders, a fast IVOCT signal
drop off, and little or no OCT signal back scattering,
within a lesion that is covered by a fibrous cap. We
see that the intensity starts very bright and decreases
quickly along the A-line (Gargesha et al. 2015). 

A calcified plaque (figure 4c) appears as a low inten-
sity or heterogeneous region with a sharply delineat-
ed border (leading, trailing, and/or lateral edges). Cal-
cium is darker than fibrous plaque with greater
variation in intensity level.

Based on this description, we construct a set of
eight (real-valued) features for each pixel in the
image. We compute these features using a three-
dimensional (3D) neighborhood centered on the pix-
el of interest. The third dimension comes from neigh-
boring images (human analysts will often use
adjacent images when annotating an image). In these
features, σ represents the standard deviation of the
intensity values within a 3D neighborhood.

Distance to Lumen (Dl): This is a measure of the dis-
tance of the center pixel from the lumen border (that
is, the wall of the blood vessel). This feature helps
identify lipid plaques since they are typically within
a fibrous plaque.

Beam Penetration (Dd): This is a measure of the
length of the beam from the lumen border to the
back border (the border beyond which the near
infrared beam does not reach and the signal is at
baseline). It depends on tissue type, thus can distin-
guish between plaques. This feature is invariant for
pixels across an A-line but varies across A-lines.

Mean Intensity (I): This represents the average sig-
nal intensity of the different plaque types within the
3D neighborhood. As can be seen in figure 4, this is a
very distinctive feature.

Homogeneity (H): This is a local coefficient of varia-
tion, σ /I. It helps in distinguishing between hetero-
geneous intensity regions and homogeneous intensi-
ty regions.

Relative Smoothness of Intensity (S): This is defined as
S = 1 – 1/(1 + σ2). S is 0 for constant intensity regions
and it approaches 1 for large deviations in intensity
values. 

Entropy (E): Entropy is another measure of the vari-
ability of the signal intensity within the respective
plaque type regions. To compute it, we construct a
histogram of the intensity distribution within a 3D
neighborhood, convert it to a probability distribu-
tion, and then estimate its information content.

Similar features as these are often used in image-
processing applications (Gonzalez, Woods, and
Eddins 2009). The final two features we use are opti-
cal parameters. 

Attenuation Coefficient, μt — This feature measures
the rate at which the signal intensity drops off with-
in the tissue. Calcified plaque has lower attenuation,
and as a result, IVOCT can see deeper into these tis-
sues compared to lipid, where IVOCT does not see as
deeply. For this reason, the attenuation coefficient
(or penetration depth) gives useful information
about plaque types. 

Incident Intensity, I0 — This represents the back scat-
tering characteristics of the plaque at the point where
the light touches it. This feature is excellent at dis-
tinguishing fibrous plaques, which are very reflective.
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Figure 3. Calcific Coronary Plaques.

Imaged in vivo by optical coherence tomography (OCT) (A, C) and intravas-
cular ultrasound (IVUS) (B, D). (A) This OCT image shows a well delineated,
heterogeneous, signal-poor region corresponding to a macrocalcification (A,
arrow), also seen in the corresponding IVUS image (B, arrow). A signal-rich
fibrous band (A, two arrowheads) overlying the calcification is easily iden-
tified in the OCT image but is obscured by a saturation artifact in the IVUS
image. (C) A thin layer of circumferential calcification is seen in this OCT
image (arrows) as a well-defined, heterogeneous, signal-poor region within
the vessel wall. A side-branch (arrowhead) can be seen adjacent to the
guidewire artifact (*). (D) The extent of the calcifications (arrows) and their
relation to the surrounding fibrous components of the plaque are not as
clearly seen in the corresponding IVUS image. The borders of the guidewire
(*) artifact are marked by dotted lines in A, C. Tick marks, 1 mm. (Source:
Jang et al. 2002). 
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These features are based on models of light trans-
mission and reflectance. We verified our models by
fabricating phantom (realistic imitations) blood ves-
sels with known plaque types and checking the esti-
mates against measured values in these cases. 

The Plaque-Type Classifier
After extracting features from pixels in our IVOCT
images, we then train a support vector machine
(SVM) (Cristianini and Shawe-Taylor 2000) for classi-
fication of the individual pixels. The SVM is a state-
of-the-art classification method. It is theoretically
well founded and robust to noise in the data, which
is a desirable property. 

A second desirable property of the SVM is its abili-
ty to construct nonlinear classifiers through the use
of kernel functions. A kernel function implicitly
maps the input data to a possibly high dimensional
space, where it learns a linear classifier. Since this
mapping is done implicitly (that is, we never actual-
ly construct the high-dimensional feature vector), the
procedure is computationally efficient. In our work,
we use a radial basis function (RBF) kernel, which is a
commonly used kernel.

The SVM is a binary classifier. Given that we are
interested in classifying three different plaque types,
we use a one-versus-rest (OVR) approach for multi-
class classification. This produces three binary classi-
fiers, one treating each class as positive and the oth-
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Figure 4. Appearance of Plaque Types in Clinical Images. 

A is fibrous, B is lipid, and C is calcium. D shows the appearance of a normal blood vessel wall, which has layered structure. 
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ers as negative. During classification, each new exam-
ple is classified by all three classifiers. If more than
one classifies the point as positive, it is associated
with the label corresponding to the classifier with the
maximum margin.

There are two parameters that must be input to the
SVM: C, the regularization parameter that trades off
margin size and training error, and γ, the RBF kernel’s
bandwidth. In our experiments, we select these
parameters using an internal fivefold stratified cross-
validation loop and a two-dimensional grid search.

Image Data Sets
The clinical images (in vivo) that we used for evalu-
ating our approach were selected from a large data-
base of manually analyzed IVOCT images obtained
in a clinical setting. Images were collected on the C7-
XR system from St. Jude Medical Inc., Westford, MA.
It has an OCT swept source that has a 1310 nm cen-
ter wavelength, 110 nm wavelength range, 50 kHz
sweep rate, and ~12 mm coherence length. The pull-
back speed was 20 mm/s and the pullback length was
54 mm. The images consist of 35 IVOCT pullbacks of
the left anterior descending (LAD) and the left cir-
cumflex (LCX) coronary arteries of patients acquired
prior to stent implantation, with a total of 287
images across 35 patients. An expert cardiologist on
our team then labeled volumes of interest (VOIs) as
belonging to one of the three plaque types in the
images. The expert marked the VOIs of a particular
plaque type using freehand brush strokes. On the
clinical images the expert annotated 311 VOIs
(roughly equal number from each plaque type). VOIs
were of various sizes and shapes. Most consisted of 2–
5 image frames, 50–200 A-lines, and 20–50 sample
points in each A-line.

A concern with the images is that the image anno-
tations we train with are provided by an expert and
so could contain errors. To evaluate the performance
of the trained classifier on ground truth, we created a
second data set using cryo-imaging from cadaver
samples (Salvado et al. 2006). The system serially sec-
tions and acquires micron-scale color images using
different lighting wavelengths (figure 7, depicted lat-
er in this article, left column, bottom row shows an
example of lipid plaque obtained this way) and aut-
ofluorescence microscopy images along the vessel
(figure 7 left column, top row shows a calcified lesion
obtained this way). Visualization software is then
used on the cryo-images to generate microscopic res-
olution color/fluorescence volume renderings of ves-
sels, in which plaque architecture and components
are fully preserved (Nguyen et al. 2008, Prabhu et al.
2016). This provides an accurate depiction of the ves-
sel without the limitations of standard histological
fixation and processing (shrinkage, spatial distortion,
missing calcifications, missing lipid pools, tears, and
so on). Most importantly, this provides 3D validation

for volumetric IVOCT pullback. Furthermore, in cas-
es where plaque type may be ambiguous, the system
enables acquisition of standard cryo-histology.

We acquired a set of 106 such cryo-images. Note
that, since these are ex vivo, we do not use these
images for training our classifiers but use them to val-
idate the results. We call these images “cryo-images”
below to distinguish them from the previous set.

Empirical Evaluation
We now describe experiments to test our hypothesis
that the system we described will be able to accu-
rately and efficiently classify different plaque types
from IVOCT images. 

We preprocess all images for speckle noise reduc-
tion, baseline subtraction, catheter optical system
correction, and catheter eccentricity correction. We
segment the lumen and the back border using
dynamic programming. To do this, we use a cost
function from prior work (Wang 2012). An example
of the results of the back-border segmentation is
shown in figure 5 in both the r-θ view and the x-y
view. Segmenting the image in this way is important
because (1) the regions of interest are contained
between these borders and the rest of the pixels do
not contain any relevant information, and (2) it
enables us to properly compute the distance to the
lumen and the beam penetration depth discussed
previously, which are important signals for different
plaque types.

Next, we generate features by scanning the anno-
tated VOIs in the image pixel by pixel. For each pix-
el, we construct a 7 x 11 x 3 neighborhood (0.035mm
x 0.055mm x 0.6mm) around it. As long as the neigh-
borhood is within the VOI, the features of the box
are computed as explained above and the values are
assigned to the pixel. In the cryo-images we generat-
ed features for all pixels between border regions in a
similar way. 

For cross validation we use the processed images
with a leave-one-pullback-out strategy. Here, in each
iteration, we hold out all the data from one pullback
as the test set and use the remaining 34 pullbacks as
the training set. This mimics practical usage where
the system will operate on novel pullbacks and is
more stringent than using random folds. In a second
experiment, we ran the trained classifiers on the
cryo-images (these were not used at all during train-
ing/cross validation). We ran our experiments on a
64-bit Windows 7 machine with third-generation
Intel Core i7 and 16 GB RAM.

Results and Discussion
The receiver operating curves (ROC) for each OVR
classifier from the cross-validation experiment is
shown in figure 6. The summary statistics are shown
in table 1, where the accuracy, sensitivity, and speci-
ficity are noted at the optimal operating point along
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the curves. The ROC describes the system’s behavior
for a range of confidence threshold settings and
enables the cardiologist (the end user) to decide on
weighting the false positives (FPs) and false negatives
(FNs) unequally (a very desirable property according
to our expert). 

The overall accuracy results, averaged over 35
folds, are shown in table 2. As can be seen from all of
these results, our approach has excellent accuracy for
all three plaque types. In fact, across the 35 folds, the
median accuracy for all three plaque types is 100 per-
cent, indicating that our classifiers are able to per-
fectly separate the plaque types using the features we
designed. In a few folds, the accuracy is lower than
100 percent. We conjecture that this is because some
pullbacks have many more images associated with
them than others. When such a pullback is held out,
the training set size decreases in size and yields a clas-
sifier with lower accuracy.

In the second experiment, we ran our trained classi-
fier on the cryo-images. We also ran a baseline
approach following Ughi et al. (2013). This approach
uses beam-attenuation estimates from a layer model
applied to single A-lines and 2D texture and geometric
measures as features for classification with the added
requirement of manual region of interest selection for
analysis. These results are shown in table 3. Here the
“Other” row corresponds to pixels in these images that
belong to none of the three plaque types. The accura-
cy of the approach in this case is lower, possibly
because these are ex vivo images, which have some-
what different characteristics from the training set.
However, our approach still outperforms the state of
the art. Further, these values are still at a very useful lev-
el according to our expert. In particular, cardiologists
now divide an image into quadrants and simply state
whether a quadrant contains a certain plaque type. If
we use this as a performance measure, our current
approach has perfect accuracy on the cryo-images.

The results also indicate that in some cases some
plaque types may be confused with others. For exam-
ple, the average intensity of a lipid region may be
very close to that of calcium. However, they may still
be separable due to the fact that the lipid’s attenua-
tion coefficient is much higher. 

To confirm our intuitive understanding of the
plaques’ characteristics we performed a leave-one-fea-
ture-out experiment. In this experiment, we ran the
classifier using all of the features and noted the accu-
racy measures (as shown in table 2). We then
removed each feature at a time to see the impact on
the accuracy. We found that removing the attenua-
tion parameter had the biggest impact on the lipid
accuracy, reducing it down to 92.4 ± 8.87 percent,
while removing the average intensity feature had a
significant effect on the fibrous’ accuracy and uncer-
tainty (down to 95.2 percent ± 10.75).

In addition to high accuracy, our approach is also
efficient at classification. Each test fold (on average
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Figure 5. Results of the Back-Border Segmentation. 

An illustration of back-border segmentation (yellow line) along with lumen
segmentation (red line) in a typical clinical image in both views. (a) is the
polar image and (b) is the x-y image. The yellow line is broken due to view
conversion. Asterisk marks the guide-wire shadowing artifact. 

Table 1. Performance Measures.

Area under ROC and the accuracy, sensitivity, and specificity at the optimal
operating point on the ROC curves.

 Calcium Lipid Fibrous 

Accuracy 92.2 ± 6.28% 96.95 ± 2.79% 96.17 ± 4.0% 

Sensitivity 93.0 ± 2.58% 98.95 ± 2.35% 94.28 ± 5.23% 

Speci!city 96.5 ± 3.39% 93.65 ± 2.77% 95.89 ± 2.18% 

AUC 0.9837 0.9947 0.9959 



200,000 data points) was classified in 0.366 seconds
by our implementation. This facilitates future real-
time usage.

Finally, we consider whether an automatic classifi-
cation procedure such as this can be useful in reduc-
ing the amount of time taken to process images in a
clinical setting. In an initial experiment, we found
that cardiologists would spend approximately five
hours analyzing a section of a blood vessel. We then
created a tool (figure 8) with our classifier built in.
The screen of this graphic user interface (GUI) is
divided into two main regions. The leftmost region
contains the tools provided to the user. There, the
user can select which view is most informative, adjust
image contrast and/or window level, and so on. The
right region is the work area where the user can inter-
act with any of the views, slide along the pullback to
focus on the cross section of interest, make measure-
ments, create annotations, and more. The cardiolo-
gist would run the classifier for a new image and
then, using the interactive tools, analyze the results
and correct some of the errors in the predictions. 

The process, which the cardiologist follows, can be
described by following the process used in order to
annotate, classify, validate, and clean classification
results as shown in figure 7. In this figure, the left-
most column shows cryo-images (Roy et al. 2009)
while the second column from the left shows the
IVOCT images. Using the annotation function of the
plaque analysis tool, the expert would annotate the
image pixels as belonging to either calcium, lipid,
fibrous, or something else (used during training). The
third column from the left shows the result of this
annotation. It shows a mask, the same size as the
image itself, that indicates the location of each
plaque using colors. The next step includes running
the classifier, the results of which are shown in the
fourth column from the left. These results after pre-
processing to remove isolated artifact predictions are
presented to the cardiologist (rightmost column).

We found that this process took at most an hour, a
reduction of 80 percent. This effort reduction indi-
cates that improving the tool  (figure 8) will make it
deployable in the near future. 

Conclusion and Future Work
In this article, we have discussed an important
emerging application: an automated approach for
early plaque detection in blood vessels. Our approach
analyzes IVOCT images to solve this task. Using a
carefully designed feature set, we show that an SVM
with an RBF kernel is a high-accuracy classifier for
this task. Our results are of significant impact on this
important problem (Wagstaff 2012) with implica-
tions for early diagnosis of cardiovascular disease.
Now, for the first time, to our knowledge, it is possi-
ble to perform complete plaque analysis automati-
cally, enabling not only treatment planning for

plaque modification in real time but also to provide
enough information to perform studies on the effects
of various treatments of vulnerable plaque as well as
offline assessment of drug and biologic therapeutics.

In future work we will develop a complete software
suite for automated plaque characterization, creating
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Figure 6. ROC Curve for All Three Plaque Types. 

Area under the curve (AUC) values are 0.9837, 0.9947, and 0.9959 for calci-
um, lipid, and fibrous, respectively. 
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Table 2. Accuracy Results for 
Leave-One-Pullback-Out Experiment.

 Accuracy Median Acc. 

Overall 90.70 ± 8.28%  

Calcium 92.14 ± 10.74% 100% 

Lipid 96.40 ± 8.87% 100% 

Fibrous 100% ± 0.0% 100% 

Table 3. Accuracy Results for Cryo-images.

 Our Approach Baseline 

Overall 81.15% 69.4% 

Calcium 97.62% 66.88% 

Lipid 87.65% 67.07% 

Fibrous 97.39% 77.95% 

Other 77.96% 30.46% 



a powerful tool for live-time treatment
planning of coronary artery interven-
tions by adding functionality such as
integration with a real-time 3D visual-
ization module that will be able to
quantify (volume, area covered, and
others) the presence of calcified
regions. An example of such visualiza-
tion is shown in figure 9, which is
implemented by stacking the output of
multiple 2D images.

This can help in decision making
regarding stent implantation and
preimplantation treatment, or plaque
remodeling (for example, directional
atherectomy). We also plan to add an
explanatory module to help explain
the automated classification process to
the interventional cardiologists and to
accept feedback in an active learning
environment. Finally, we will develop
an easily accessible web-based tool for
offline analysis of IVOCT images.

We expect that such a tool will be
used by entities requiring fast analysis
that can provide data useful for drug
assessment, experimental therapeutics,
and experimental medical devices. 
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Figure 8. Graphic User Interface of Plaque Analysis Tool. 

The left side provides various editing tools. On the right the tool provides views to be used by the interventional cardiologist.

Figure 9. 3D Visualization of Calcified Region Within, Otherwise, Healthy Blood Vessel. 

The white region indicates the presence of calcium (created using Amira). Best viewed in color.
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More and more, communicating or autonomous sys-
tems rely on software-based components that have
high standards in terms of reliability, robustness,

and quality. For instance, professional conferencing systems
or industrial robotics systems are released in markets where
high quality is considered a competitive advantage. For these
systems, an increased effort in software validation and verifi-
cation is required to produce high-quality components that
can be deployed in operational settings.

Software validation and verification include several dis-
tinct phases such as functional testing, performance testing,
and regression testing. Regression testing verifies that a new
release of a software component still performs as expected
after new features are implemented. By executing the soft-
ware component with existing test cases that were used to
test previous releases, regression testing checks for the
absence of regression faults, that is, faults that may have been
reintroduced into the application during development of
new features. In order to keep the time to market of new
releases short, a judicious selection of test scripts to execute
has to be performed.
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Using Global Constraints to 
Automate Regression Testing

Arnaud Gotlieb, Dusica Marijan

n Communicating or autonomous systems
rely on high-quality software-based compo-
nents. that must be thoroughly verified before
they are released and deployed in operational
settings. Regression testing is a crucial verifi-
cation process that compares any new release
of a software-based component against its
previous versions, by executing available test
cases. However, limited testing time makes
selection of test cases in regression testing
challenging, and some selection criteria must
be respected. Validation engineers usually
address this problem, coined as test suite
reduction (TSR), through manual analysis or
by using approximation techniques. In this
paper, we address the TSR problem with
sound artificial intelligence techniques such
as constraint programming (CP) and global
constraints. By using distinct cost-value-
aggregating criteria, we propose several con-
straint-optimization models to find a subset
of test cases that cover all the test require-
ments and optimize the overall cost of select-
ed test cases. Our contribution includes reuse
of existing preprocessing rules to simplify the
problem before solving it and the design of
structure-aware heuristics that take into
account the notion of the costs associated
with test cases. The work presented in this
paper has been motivated by an industrial
application in the communication domain.
Our overall goal is to develop a constraint-
based approach of test suite reduction that
can be deployed to test a complete product line
of conferencing systems in continuous deliv-
ery mode. By implementing this approach in
a software prototype tool and experimentally
evaluating it on both randomly generated and
industrial instances, we hope to foster a quick
adoption of the technology.



Dealing with multiple criteria when performing
regression testing is important. For example, select-
ing a test suite that minimizes total execution time
while preserving its coverage of user requirements is
highly desirable for testing of software components.
Yet the budget allocated to testing is limited, and
optimizing the selection of test cases is a time-con-
suming activity. In practice, validation engineers
solve the test suite reduction (TSR) problem through
manual analysis or by approximation techniques.
However, automated means to solve TSR instances
efficiently are required when software components
are developed in continuous delivery mode (Stolberg
2009). In fact, continuous integration involves fre-
quent execution of regression test scripts to detect
faults as early as possible, which means that auto-
mated selection of regression tests is indispensable in
this context.

Overview
Formally speaking, given a set of requirements and a
test suite that covers these requirements, the test
suite reduction problem aims at finding a smallest
subset of test cases in the test suite such that any
requirement is covered at least once. By considering
a cost value associated with each test case, a natural
extension of this problem is to minimize the overall
cost of the test suite, not just its size. Unfortunately,
solving TSR is intractable in general (Harrold, Gupta,
and Soffa 1993), and compromises have to be found
either by adopting heuristics-based approximation
algorithms or by using time-aware exact approaches.

Existing Results
The topic of test suite reduction has received consid-
erable attention in the last two decades. Roughly
speaking, we can distinguish greedy techniques (Tal-
lam and Gupta 2005, Jeffrey and Gupta 2005),
search-based testing techniques (Ferrer et al. 2015;
Wang, Ali, and Gotlieb 2015), and exact approaches
(Hsu and Orso 2009; Chen, Zhang, and Xu 2008;
Campos et al. 2012; Li et al. 2014; Gotlieb and Mari-
jan 2014).

Greedy techniques for test suite reduction usually
select first the test cases that cover the most require-
ments and iterate until all requirements are covered.
In the 1990s, Harrold, Gupta, and Soffa (1993) pro-
posed a technique that approximates the computa-
tion of minimum-cardinality hitting sets. This work
was further refined with different variable orderings
(Offutt, Pan, and Voas 1995). More recently, Tallam
and Gupta (2005) introduced the delayed-greedy
technique, which exploits implications among test
cases and requirements to refine further the reduced
test suite. The technique starts by removing test cas-
es that cover the requirements already covered by
other test cases. Then it removes test requirements
that are not in the minimized requirements set, and

finally it determines a minimized test suite from the
remaining test cases by using a greedy approach. Jef-
frey and Gupta (2005) extended this approach by
retaining test cases that improve a fault-detection
capability of the test suite. Comparing to the paper
by Harrold, Gupta, and Soffa (1993), the approach
produces bigger solutions, but with higher fault-
detection effectiveness.

One shortcoming of greedy techniques is that they
only approximate global optima without providing
any guarantee of optimality. Search-based testing
techniques have also been tailored for test suite
reduction. Wang, Ali, and Gotlieb (2015) explore
classical metaheuristics such as hill climbing, simu-
lated annealing, or weight-based genetic algorithms
for (multiobjective) test suite reduction. By compar-
ing 10 distinct algorithms for different criteria, they
observed that random-weighted multiobjective opti-
mization is the most efficient approach. However, by
assigning weights at random, this approach is unfor-
tunately not able to place priority over the various
objectives. Ferrer et al. (2015) examine other algo-
rithms based on metaheuristics. All these techniques
can scale up to problems that have a large number of
test cases and requirements, but they cannot explore
the overall search space and thus they cannot guar-
antee global optimality.

On the contrary, exact approaches, which are
based either on Boolean satisfiability or integer linear
programming (ILP), can reach true global minima.
The best-known approach for exact test suite mini-
mization is implemented in MINTS (Hsu and Orso
2009). MINTS has been used to perform test suite
reduction for various criteria including energy con-
sumption on mobile devices (Li et al. 2014). Similar
exact techniques have also been designed to handle
fault localization (Campos et al. 2012). Generally
speaking, the theoretical limitation of exact
approaches is the possible early combinatorial explo-
sion to determine the global optimum, which expos-
es these techniques to serious limitations even for
small problems. A hybrid method based on ILP and
search, called DILP, is proposed by Chen, Zhang, and
Xu (2008), where a lower bound for the minimum is
computed and a search for finding a smaller test suite
close to this bound is performed. Recently, another
ILP-based approach is proposed by Hao and col-
leagues (Hao et al. 2012) to set up upper limits on the
loss of fault-detection capability in the test suite.
Mouthuy, Deville, and Dooms (2007) proposed a
constraint called SC for the set-covering problem.
They created a propagator for SC by using a lower
bound based on an ILP relaxation. Finally, Gotlieb
and Marijan (2014) introduced an approach for test
suite reduction based on the computation of maxi-
mum flows in a network flow. This initial idea has
partly triggered the work reported in the present arti-
cle.
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Contributions
This article proposes a new approach of test suite
reduction based on constraint programming (CP)
and global constraints. Global constraints encode
relations over a nonfixed number of variables with
dedicated and efficient filtering algorithms. Our
approach uses three special global constraints devel-
oped in CP, namely NVALUE, GLOBALCARDINALITY, and
SCALAR_PRODUCT. NVALUE constrains the number of
distinct values that can be taken by a set of variables
(Pachet and Roy 1999), while GLOBALCARDINALITY gen-
eralizes this relation by considering explicit cardinal-
ity values for these variables (Régin 1996).
SCALAR_PRODUCT simply encodes the scalar product
between two vectors of variables as a relation. By
combining these global constraints with advanced
preprocessing rules and sophisticated structure-aware
search heuristics, the proposed approach creates a
constraint-optimization model that competes with
the best known exact approach for test suite reduc-
tion, namely MINTS (Hsu and Orso 2009). As said
above, associating a cost value to each test case is a
natural extension of TSR. Indeed, such a cost value
can represent or aggregate distinct notions such as
execution time, code coverage, energy consumption
(Li et al. 2014), or fault-detection capabilities (Cam-
pos et al. 2012). Using these cost values, TSR reduces
to the problem of selecting a subset of test cases such
that all the requirements are covered and the overall
cost of the test suite is minimized. The proposed
approach is also capable of optimizing an overall cost
function depending of these cost values, while pre-
serving the full coverage of requirements. We imple-
mented our approach in a tool called Flower/C and
performed a set of experiments with both randomly
generated TSR instances and industrial instances. The
experimental results show that Flower can be
deployed into an industrial context and its route for
exploitation is discussed. Next section formally
defines TSR and gives some background on CP and
global constraints. The following section shows three
CP optimization models involving distinct combina-
tions of global constraints. It also introduces prepro-
cessing rules for TSR that can simplify the instances
beforehand, and a dedicated search heuristics. The
following section presents an experimental evalua-
tion of the proposed models as well as a comparison
with other approaches. Finally, the last sections draw
perspectives for the industrial exploitation of the pro-
posed approach and conclude the article.

Background
This section formalizes the test suite reduction prob-
lem and briefly reviews the notion of global con-
straints.

Test Suite Reduction
Test suite reduction aims to select a subset of test cas-

es out of a test suite, which minimizes its overall cost,
while retaining its coverage of requirements. Rough-
ly speaking, a TSR instance is defined by an initial test
suite T composed of m test cases {t1, …, tm}, each test
case being associated with a cost value noted c(ti), a
set of n requirements R = {r1, …, rn}, and a function
called cov(ri) that maps each requirement ri to the
subset of test cases that cover it. We suppose that
each requirement is covered by at least one test case
and each test case covers at least one requirement. An
example with five test cases and five requirements is
given in table 1, where the value given in the table
denotes the cost of each test case. Solving TSR aims at
finding a subset of test cases such that every require-
ment is covered at least once, and the overall cost is
minimized.

A labeled bipartite graph can be used to encode
any TSR instance, with edges denoting the relation
cov and labels denoting the costs over the test cases,
as shown in figure 1. The overall cost of a test suite
can be computed as the sum of each individual cost
of its test cases, but other functions can be consid-
ered as well (for example, the max of costs). Note that
the cost associated to any test case does not differ
with respect to the covered requirement. The frame-
work can be extended with a distinct cost for each
requirement, but this brings more complexity with-
out much benefit for validation engineers. Note also
that the optimal solution shown in figure 1 is not
unique. For example, {ta, tb, td} covers all the require-
ments and has also TotalCosts = c(ta) + c(tb) + c(td) = 5.
When the cost associated to each test case are all the
same, then TSR reduces to the problem of finding a
subset of minimal size.

Constraint Programming 
and Global Constraints
Constraint programming is a powerful declarative
paradigm where logic and control are driven by con-
straint solving. Any constraint enforces a symbolic
relation over a set of unknown variables, which take
their values in a domain (Rossi, van Beek, and Walsh
2006). When the domain is finite, it can be mapped
to a finite subset of integers without any loss. A con-

Table 1. A TSR Problem Instance.

cost r1 r2 r3 r4 r5 

ta 2 2 - - - 

tb 1 - 1 - - 

tc - 3 3 - 3 

td - - - 2 2 

te - - - 1 - 



straint program over finite domain variables is a
finite set of constraints, which come with filtering
algorithms. These algorithms prune the domains of
the constraint variables from some of their inconsis-
tent values. For instance, if X takes an unknown val-
ue in the finite domain {2, 3, 5} and Y takes a value
in {3, 4, 5, 6} then the filtering algorithm associated
with X = Y can prune the domains of both X and Y
to {3, 5}. In this context an assignment is just a map-
ping from any variable, noted with uppercase letters
in the article, to a value from its respective domain,
noted with lowercase letters. A constraint program is
satisfiable when there exists at least one assignment
that satisfies all the constraints. It is unsatisfiable oth-
erwise. Among the satisfiable assignments, some can
minimize a cost function and thus, CP can be used to
solve optimization problems as well.

In CP, two types of constraints can be distin-
guished, namely the relations that hold over a
known number of variables (typically 1, 2, or 3) and
relations that hold over a nonfixed number of vari-
ables. Constraints from this latter category are called
global constraints, especially when they implement
dedicated and efficient filtering algorithms.

A first example of global constraints is given by the
following constraint:

Definition 1. (NVALUE [Pachet and Roy 1999]). 
Let N be a domain variable and V be a vector of
domain variables, NVALUE(N, V ) holds iff the number
of distinct values in V is equal to N.

For instance, NVALUE(N, [3, 1, 3]) entails N = 2 and
is solved, NVALUE(3, [X1, X2]) is unsatisfiable, and
NVALUE(1, [X1, X2, X3]) entails X1 = X2 = X3.

Another example of global constraint, which gen-
eralizes NVALUE is now given:

Definition 2. (GLOBALCARDINALITY [Régin 1996]). 

Let T = (T1, …, Tn) be a vector of domain variables, let
d = (d1, …, dm) be a vector of distinct integers, and let
C = (C1, …, Cm) be a vector of domain variables, GLOB-
ALCARDINALITY(T, d, C) holds iff for each i ∈ 1..m the
number of occurrences of di in T is Ci. The Ci variables
are the occurrence variables of the constraint.

For instance, GLOBALCARDINALITY((T1, T2, 5), (5, 7),
(C1, C2)) prunes the domains of T1 and T2 to {5, 7},
the domain of C1 to {1, 2, 3} and the domain of C2 to
{0, 1, 2}. A polynomial filtering algorithm for this
constraint was given by Regin (1996).

CP Models of the TSR Problem
In this section, we present distinct constraint-opti-
mization models based on NVALUE, GLOBALCARDINALI-
TY for the TSR problem.

A Naive Model (NVALUE)
In CP, TSR can easily be encoded with the following
scheme: each requirement to be covered can be asso-
ciated with a domain variable R having as finite
domain, which is composed of the test cases that cov-
er the requirement. More precisely, R belongs to {t1,
…, tn}, where each ti corresponds to an integer associ-
ated with a test case that covers R. So, for example,
the instance reported in table 1 can be encoded as fol-
lows:

R1 ∈ {1, 2}, R2 ∈ {1, 3}, R3 ∈ {2, 3}, R4 ∈ {4, 5}, R5 ∈ {4} 

where ta is associated with 1, tb is associated with 2,
and so on.

Figure 2 shows a first constraint-optimization pro-
gram for an instance of test suite reduction.

This model aims to minimize the number of dif-
ferent values that can be taken by R1, …, Rn, that is,
the number of distinct test cases that cover all the
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Figure 1. TSR as a Bipartite Graph with an Optimal Solution.

(a) Bipartite Graph. (b) Optimal Solution.
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requirements. Using NVALUE enables the minimiza-
tion process to reduce the number of test cases, while
the second part of the model computes the sum of
costs. This model is naive for two reasons: firstly, it
does not guarantee finding the minimum of costs
even though it finds the minimum number of test
cases (issue 1), and secondly, it allows us only to
search on a tree composed of the requirement vari-
ables (issue 2). In fact, the only variables of this mod-
el are the Ri, which means that branching on the
selection of test cases is unfortunately not possible.
For example, selecting first the test cases that cover
the most requirements while searching for a mini-
mum is not possible. In order to tame this problem
(issue 2), another model based on GLOBALCARDINALITY

can be proposed.

A Model with GLOBALCARDINALITY(GCC2)
Let Oi be a domain variable representing the number
of times test case ti is selected to cover R1, …, Rn. The
model shown in figure 3 addresses TSR by using two
GLOBALCARDINALITY constraints.

The first GLOBALCARDINALITY enforces the coverage
relation between test cases and requirements by con-
straining the occurrence variables Oi, while the sec-
ond GLOBALCARDINALITY counts the number of 0
(zeros) in the list of occurrence variables. This allows
the model to constrain the selection of test cases by
maximizing the number of unselected test cases.
Thus, branching on the number of occurrences of

each test case becomes possible with this model. Still,
this model does not address issue 1 mentioned above,
as it does not guarantee to reach the minimum of the
overall cost of test cases. Another model can be pro-
posed to deal with both issue 1 and issue 2.

An Optimized Model (Mixt)
In this third model, (R1, …, Rn.), (O1, …, Om) are deci-
sion variables, only known through their domain.
The Boolean variables B1, …, Bm are local variables
introduced to establish the link with costs. By using
the global constraint SCALAR_PRODUCT((B1, …, Bm), (c1,
…, cm), TotalCosts), which enforces the relation 

this model actually minimizes TotalCosts, the sum of
the costs of selected test cases. In fact, the nonnull Bi
variables correspond to the selected test cases. The
constraint GLOBALCARDINALITY allows us to constrain
the variables Oi, which are associated with the num-
ber of selected test cases. This model can be solved by
searching the space composed of the possible choic-
es for (R1, …, Rn), (O1, …, Om). Interestingly, it allows
us to branch either on the choice of requirements or
on the choice of test cases. Hence, it addresses both
issues 1 and 2. An optimal solution of this model is
an optimal solution of TSR and vice versa, as proved
by the following sketch of proof.

(⇒) An optimal solution of TSR corresponds to the
assignment of (R1, …, Rn) with test cases that mini-

TotalCosts = 1!i!m Bi" # ci
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Figure 2. A First Constraint-Optimization Model for TSR (Naive).

Minimize Ns.t.NVALUE(N, (R1, . . . ,Rn))
for i = 1 to n s.t. Ri ≠ Rj for any j do ∑i c(tRi) = Total Costs.

Figure 3. A Constraint-Optimization Model for TSR Based on GlOBAlCARDINAlITY.

Maximize N s.t.

GLOBALCARDINALITY((R1, . . . ,Rn); (t1, . . . , tm); (O1, . . . ,Om))∧
GLOBALCARDINALITY((O1, . . . ,Om); (0); (N))
for i = 1 to n s.t. Ri ≠ Rj for any j do ∑i c(tRi) = Total Costs.



mize the sum of costs. Let us call {tp, …, tq} this solu-
tion and minimum this sum. This is also an optimal
solution of our model. In fact, the variables {Op, …,
Oq} are strictly positive because their associated test
case is selected in the solution through GLOBALCARDI-
NALITY, which means that only the corresponding {Bp,
…, Bq} are equal to 1 and thus SCALAR_PRODUCT((B1,
…, Bm), (c1, …, cm), TotalCosts) is equal to minimum.

(⇐) An optimal solution m of our constraint-opti-
mization model is also an optimal solution of TSR. In
the model, TotalCosts is assigned to the sum of costs
of selected test cases and there exists no other assign-
ment of Bi, which gives a smaller value than m. Then,
it means that m is actually the minimum cost of the
TSR instance, and the test cases selected by the Bi are
the solution of this problem.

Even if the model given in figure 4 is generic, it
involves searching a space of exponential size O(Dn)
where D denotes the size of the greatest domain of
any requirement variable and n is the number of test
cases. This does not come as a surprise as TSR has
been shown to be NP-hard (Hsu and Orso 2009).

Solving TSR can be improved by considering a
number of optimizations, including preprocessing
rules and specialized search heuristics.

Preprocessing
Preprocessing can be used to reduce the size of the
problem beforehand, by using the following rules:

Rule 1.
For two test cases t1, t2, if all the requirements covered
by t1 are included in the subset of requirements cov-
ered by t2, then t1 can be safely ignored during search,
as it is always be preferable to select t2 instead of t1.

Rule 2.
Conversely, for two requirements r1, r2, if all test cas-
es covering r1 are included in the subset of test cases
covering r2, then r2 can be safely removed from the
set of requirements to be covered. Indeed, any test
case covering r1 will automatically cover r2 as well.

Rule 3.
If there is a requirement that is covered by only a sin-
gle test case t then t must be included in the solution
set. Figure 5 illustrates these preprocessing rules.

A Dedicated Heuristic
Search heuristics include strategies for selecting a
variable to be enumerated first and a value to be
selected first. Both strategies can be tuned by the
available constraints and variables of the model. The
first idea is to use the classical first-fail principle,
which selects first the variable representing the
requirement that is covered by the least number of
test cases. As all the requirements have to be covered,
it means that these test cases are most likely to be
selected. However, this strategy ignores the selection
of the test case having the least cost or the test cases
covering the most requirements. Regarding value
selection, it is thus better to define a special heuristic
for our problem.

Unlike the static variable selection strategy used in
greedy algorithms, such as, for example, the selection
of variables based on the number of covered require-
ments, our TSR-dedicated strategy is dynamic and the
ordering is revised at each step of the selection
process. It selects first the variable Oi associated with
the test case with the smallest cost. Then, among the
remaining test cases that cover any requirement not
yet covered, it selects the variable Oj with the small-
est cost and iterates until all the requirements are
covered. In case of a choice that does not lead to a
global minimum, the process backtracks and selects a
distinct test case, not necessarily associated with the
smallest cost. Regarding the value-selection strategy,
each time a value selection is made, our TSR-dedicat-
ed heuristics select first the test cases that cover the
most requirements. Property 1 formalizes this idea.

Property 1.
Let each test case ti be represented by an occurrence
variable Oi taking its values in 0..maxi where maxi is
dynamically updated with the current partial assign-
ment. Then, for each solution X of the TSR problem
with cost f (X) where Oi = ni such that 0 < ni < maxi
(strict inequalities), there is at least one other solution
Y with cost f(Y ) ≤ f (X) where either Oi = 0 or Oi = maxi.

Note that our proposed TSR-dedicated heuristic is
incomplete, meaning that some parts of the search
tree can remain unexplored. Indeed, symmetrical solu-
tions can be ignored as explained in figure 6, but, refer-
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Figure 4. A Constraint-Optimization Model for Solving TSR.

Minimize TotalCosts s.t.
GLOBALCARDINALITY((R1, . . . ,Rn); (1, . . . ,m); (O1, . . . ,Om)),
for i = 1 to m do Bi = (Oi > 0),
SCALAR_PRODUCT((B1, . . . ,Bm); (c1, . . . , cm), TotalCosts). 
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Figure 5. Preprocessing. 

The edge (r4, te) can be safely removed by rule 1, since r4 is also covered by td, which covers another requirement. Rule 2 allows one to remove
edges (r5, tc) and (r5, td) as any test case covering r4 also covers r5. Finally, td is included in the solution set by rule 3, since it remains the only
covering r4 and r5.
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Figure 6. Two Symmetrical Solutions for CP, a Single Solution of TSR. 

In both graphs, the same optimal test suite is obtained, T΄ = {ta, tb}. However, it is associated with distinct solutions for CP because the Ri
are assigned to distinct values: on the left, R1 is assigned to ta while on the right R1 is assigned to tb. With our dedicated heuristic, an arbi-
trary selection is made, for example,, the occurrence variable Oa representing ta is assigned to 2 as shown on the left. In case of necessary
backtrack, it would be assigned to 0, but never to 1, as shown on the right.



ring to Property 1, our TSR-dedicated heuristic guar-
antees that at least one optimal solution is found.

Experimental Evaluation
We implemented the constraint-optimization mod-
els and search heuristic described above in a tool
called Flower/C, by using SICStus Prolog and its clpfd
library. This library implements a finite domains con-
straint solver. Flower/C reads a file that contains the
data about test cases, the covered requirements, and
the costs associated to test cases and processes these
data by constructing a corresponding bipartite graph
and tuning the constraint-optimization models for
solving the TSR instance. Solving the model involves
preprocessing and search among feasible solutions
with the proposed TSR-dedicated search heuristics.
These steps are encoded in SICStus Prolog.

Both random and industrial instances of TSR were
considered for the experimental evaluation. For ran-

dom problems, we created a generator of TSR
instances, which takes several parameters as inputs,
such as the number of requirements, the number of
test cases along with their associated costs, and the
density of the relation cov, which is captured with d
representing the maximum arity of any links in cov.
The generator draws a number a at random between
1 and d and creates a edges in the bipartite graph,
which represents cov. For industrial instances, we
used data (test cases, coverage, costs) from regression
testing of communication software provided by
industry.

All our experiments were run on a standard i7-
2929XM CPU machine at 2.5 GHz with 16 GB RAM.

Comparison of the Various CP Models
Figure 7 compares the CPU time required for finding
optima with the three distinct CP models. In order to
keep the comparison fair, we ignored costs in this first
experiment so that optimality was only considered
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Figure 7. Comparison of CPU Time for the CP Models.
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on the number of selected test cases. In each data set,
20 random samples were generated. For all but TD1,
the GCC2 model times out (after 300 seconds). For
the NVALUE model, we observe that the variation is
very high in most cases (TD2, TD4, TD5). Sometimes,
this models also times out. On the contrary, the Mixt
model does not present much variation, which
means that the TSR-dedicated heuristic is robust and
useful in most cases. In figure 8, we compute the per-
centage of test cases remaining in the solution set
after 30 seconds. A good reduction rate in a limited
amount of time is crucial for any industrial adoption,
as test suite reduction has to be performed within a
continuous integration process, where the reduction
is computed each time a new software release is com-
mitted.

We observe in this experiment that NVALUE is out-
performed by both GCC2 and Mixt, which both reach
the same reduction rate. This is due to the selection
of the branching heuristic, which is different for the

NVALUE model, where only the requirement variables
are available for branching.

Comparison with Other Approaches
In the first experiment, we compared our implemen-
tation, Flower/C, with three other approaches,
namely MINTS/MiniSAT+, MINTS/CPLEX, and
Greedy on randomly generated instances. MINTS is
a generic tool that handles the test suite reduction
problem as an integer linear program (Hsu and Orso
2009). For each requirement to be covered, a linear
inequality over Boolean variables is generated that
enforces the coverage of the requirement. The
Boolean variables ensure the selection of test cases.
MINTS can be interfaced with distinct black-box
constraint solvers, including MiniSAT+ and CPLEX.
We also implemented a simple greedy approach for
solving the TSR problem, which is based on a static
ordering of the test cases covering the most require-
ments.

Figure 9 shows the results of comparison of the
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Figure 8. Comparison of Reduction Rate.

(as percentage of remaining test cases, time-out = 30 seconds).
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four approaches in terms of reduction rate, obtained
in 60 seconds running time. In this experiment, the
same cost values are used for all test cases. We observe
that for the four groups of random instances (ranging
from 1000 to 2000 requirements with two distinct
maximal density values, 7 and 20), Flower/C achieves
equal or better results than all the three other
approaches in terms of reduction rate in a limited
amount of time. Regrading the two last groups (TD3
and TD4), Flower/C performs strictly better than all
the three other approaches, reaching exceptional
reduction rates. It is worth noticing that for each
group 100 random instances were generated, which
means that the results are quite stable with respect to
random variations. It is also quite clear that CPLEX
performs much better for these problems than Min-
iSAT+. This does not come as a surprise as TSR has a
simple formulation in terms of integer linear pro-

gram (CPLEX), while MiniSAT+ requires translation
into SAT clauses.

In the second experience, reported in figure 10, we
gave different cost values to each instance by making
the random generator select at random a value
between 1 and a maximum value for each test case.
In this experiment, no result is reported for
MINTS/MiniSAT+ because the objective function as
the sum of cost values cannot easily be encoded into
Boolean SAT clauses. Therefore, only the results with
MINTS/CPLEX, Flower/C, and Greedy are reported.
Figure 10 shows that the results are in favor of
MINTS/CPLEX on the four groups of random
instances, which means that more effort is needed to
find better CP models and search heuristics when
costs are present.

Evaluation on Industrial Instances
We conducted the third experiment on industrial
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Figure 9. Results of Comparison of the Four Approaches in Terms of Reduction Rate.

Comparison of reduction rate of Flower/C (Mixt), MINTS/MiniSAT+, MINTS/CPLEX, and Greedy on random instances with uniform costs
(time-out = 60 seconds).
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instances coming from an industrial partner involved
in the development of communication systems. The
data were extracted from the continuous integration
process during one cycle and converted to the spe-
cific format processed by Flower/C. The results are
shown in table 2. The CPU time required to solve
industrial instances of TSR shows that the Mixt mod-
el performs the best. Interestingly, the reduction rate
shown in the fifth row (obtained with Mixt) is quite
high for all the five industrial instances (ranging
from 61.80 percent to 26.67 percent). This shows the
importance of solving TSR in practice for our indus-
trial partner. Finally, the last row of the table shows
the number of removed requirements during prepro-
cessing.

Evaluating Preprocessing Rules
We performed other experiments to evaluate pre-
cisely the effectiveness of preprocessing rules for
both randomly generated TSR problems and indus-
trial instances, as compared to the preprocessing
used in MINTS/CPLEX. In figure 11, we evaluated the
importance of MINTS/CPLEX’s own preprocessing1

in reaching an optimal solution by observing the size
of the solution sets at different time points, and com-
pared it with our own preprocessing. We found some
data sets where Flower/C’s preprocessing rules were
more efficient than MINTS/CPLEX’s preprocessing as
shown in figure 11. However, there are also other cas-
es where the opposite was observed. In fact, Flower/C
preprocessing rules cannot be well compared with
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Figure 10. Results of Comparison of Reduction Rate on the Four 
Groups of Random Instances with Nonuniform Cost Values
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MINTS/CPLEX’s preprocessing as both tools work on
very different data structures. Finally, we looked at
the gain in terms of CPU time while activating and
deactivating Flower/C’s preprocessing as shown in
figure 12. The gain is not really spectacular even if
the percentage of removed test cases is quite good.

Comparison of Several Search Heuristics
Figure 13 shows the CPU time for three variable-
selection heuristics (that is, max, min, ff) used togeth-
er with the CP Mixt model, while the value-selection
heuristic remains unchanged. The heuristic max
selects the variable with the greatest upper bound,
min selects the variable with smallest lower bound,
while ff selects the variable with the smallest domain.

In this experiment, max achieves better result by
selecting the occurrence variable that has the greatest
arity, that is, the one associated with a test case that
covers the most requirements. We selected it to be
employed with our CP Mixt model.

Figure 14 compares different value-selection
heuristics with max, including our own heuristics
called value(enum), step, and bisect. The heuristic step
branches on all the values of the domain of occur-
rence variables in increasing order, bisect performs
domain-splitting using the middle point of the
domain of each variable, while our heuristic only
branches on Max and 0 for domain {0, 1, …, Max}.

As expected, figure 14 shows much better results
for our heuristic. However, it is worth keeping in
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Table 2. Evaluation of Flower/C on Industrial Instances.

Requirements 59 53 50 37 37 156 

Test cases 107 90 93 100 100 377 

CPU Time Nvalue(s) 0.00 0.10 0.01 0.01 0.01 0.03 

CPU Time GCC2(s) 300.00 102.00 91.80 59.16 6.09 300.00 

CPU Time Mixt(s) 0.00 0.01 0.00 0.00 0.00 0.01 

Reduction rate (%) 28.97 26.67 29.03 40.00 37.00 61.80 

Removed requirements (%) 32.00 30.19 30.00 32.43 45.95 44.87 

Figure 11. Evaluation of CPlEX Preprocessing versus Mixt.
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mind that our strategy is incomplete. Even though it
may not explore parts of the search space that con-
tain optimal solutions, it preserves at least one opti-
mal solution. When sufficient time is allocated to the
search, it always has the opportunity to reach an
optimal value faster than complete heuristics.

Path Toward Deployment
The work presented in this article has been motivat-
ed by the industrial problem of software regression
testing in the communication domain. Software is
characterized by a high degree of configurability, pro-
viding flexibility for end users to adapt systems to
their specific needs. However, configurability
involves higher complexity of software testing, and
typically larger test suites. At the same time, software
is developed following a continuous integration prac-
tice, which is characterized by a short test feedback
loop. Extensive test suites, limited test time, and high
requirements for software quality together set the
challenge of implementing an efficient test suite
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Figure 12. Comparison of CPU Time Versus Preprocessing.
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Figure 13. CPU Time of the Variable-Selection Heuristics.
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reduction that is able to reduce costs and improve the
effectiveness of regression testing in practice.

Our approach has been designed in interaction
with test engineers. The process involved observing
current test selection practice done manually by
engineers, interviews with engineers to understand
the objective behind test selection, and capturing
typical metrics such as the frequency and size of
regression test runs, regression test selection criteria,
and test failure rates. We evaluated the performance
of the approach on several instances of industrial test
suites coming from the described domain. The results
shown that the approach is applicable, and that it
can improve the speed and quality of regression test
selection in continuous integration in practice. How-
ever, more work is needed to enable seamless inte-
gration with an industrial testing framework.

We see the deployment of our approach as a staged
process. As part of first-phase deployment, we devel-
oped a prototype tool, and we provided training for
engineers on the key concepts of CP used in our
approach. We deem this step necessary for adopting
the approach by industry, as we observed a limited
familiarity with CP in this particular setting. We
envisage full deployment as an iterative process,
where we will be enhancing the tool functionality
and usability based on industry feedback. The
enhancements will relate more flexible test opti-
mization, including test prioritization, to support
achieving various testing objectives. At the final
stage, we expect the tool to be deployed organiza-
tionwide, supporting cost-effective test automation
much needed in complex continuous integration
environments.

Conclusion
This article presents the application of CP techniques
using global constraints to improve the cost efficien-
cy of software regression testing. Three CP models
using the global constraints NVALUE and GLOBALCAR-
DINALITY are proposed to encode test suite reduction
(TSR) in such a way to ensure the coverage of all user
requirements while additionally minimizing the
overall cost of a test suite. According to our knowl-
edge, this is the first time that these global con-
straints are applied to the reduction of test suites in
software testing. We find that some preprocessing
rules can drastically reduce the size of initial problem
instances and that our proposed TSR-dedicated strat-
egy can outperform other more classical labeling
heuristics such as those based on the first-fail princi-
ple. 

Note that the proposed labeling heuristic is not
complete, which means that it does not explore the
overall search space. This may explain why it has a
stronger competitive advantage over other heuristics.
At the same time, this incompleteness in the search
does not compromise reaching a true global opti-
mum for the constraint-optimization model, since
only symmetrical solutions are removed. The three
CP models are compared on random instances with
the state-of-the-art academic tool MINTS interfaced
with MiniSAT+ and CPLEX. Our results show that CP
is efficient and competitive with MINTS in terms of
percentage of test suite reduction.

Furthermore, we evaluate our approach on indus-
trial regression testing on communication software
systems. Initial results show that the approach is use-
ful for improving the speed and quality of regression
test selection in continuous integration. However,
there are challenges in fully applying complex CP
techniques to testing in practice. Although the pro-
posed search heuristics are quite efficient to prune
the search space beforehand, we do not know yet if
other heuristics could be more beneficial. Exploring
this question is part of our planned further work. We
also want to ease the adoption of CP-based solutions
in industry by the design of tailored software tools
encapsulating the complexity of constraint solving
and providing scalable integrations with software
testing tool chains.
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Figure 14. CPU Time of the Value-Selection Heuristics.
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Note
1. CPLEX processing can be deactivated on demand.
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An Introduction
Benjamin Kuipers

At AAAI-15 (25–29 January 2015) in Austin, Texas, we met to
celebrate the impact of the Shakey project, which took place
from 1966 to 1972 at the Stanford Research Institute (now
SRI International) in Menlo Park. 

We researchers in artificial intelligence during this time in
history have the privilege of working on some of the most
fundamental and exciting scientific and engineering prob-
lems of all time: What is a mind? How can a physical object
have a mind?

Some of the work going on today will appear in future text-
books, even centuries from now. We gain insights into our
own struggles in the field today by learning about the his-
torical struggles of great scientists of the past about whom we
read in today’s textbooks. The textbooks tempt us to think
that they moved surely and confidently from questions to
answers. In reality, they were frequently as confused then as
we are now, by the mysterious phenomena they were trying
to understand. When we read their history, we know the

Copyright © 2017, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Shakey: From 
Conception to History

Benjamin Kuipers, Edward A. Feigenbaum, Peter E. Hart, Nils J. Nilsson

� Shakey the Robot, conceived 50 years
ago, was a seminal contribution to AI.
Shakey perceived its world, planned
how to achieve a goal, and acted to car-
ry out that plan. This was revolution-
ary. At the 29th AAAI Conference on
Artificial Intelligence, attendees gath-
ered to celebrate Shakey and to gain
insights into how the AI revolution
moves ahead. The celebration included
a panel that was chaired by Benjamin
Kuipers and featured AI pioneers Ed
Feigenbaum, Peter Hart, and Nils Nils-
son. This article includes written ver-
sions of the contributions of those pan-
elists. —ed.
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answers they were seeking, and we can learn from the
blind alleys they spent time in, and the insights that
led them to the right paths.

Artificial intelligence marks its birth at the 1956
Dartmouth Conference. There have been many
important milestones along the way. The important
milestone we will celebrate today is the Shakey proj-
ect, which created a physical robot that could per-
ceive its environment and the objects within it.
Shakey could make a plan to achieve a goal state. And
it could carry out that plan with physical actions in
the continuous world. The Shakey project laid a
foundation for decades of subsequent research. We
are here to celebrate and understand that project.

The centerpiece of the Shakey celebration was a
panel presentation at AAAI-15, designed to give the
audience an understanding and appreciation of the
process of the research in the Shakey project, and of
the long-term impact of that work on the larger field
of AI. The goal was to have three speakers address (1)
the state of the art in AI before the Shakey project (Ed
Feigenbaum); (2) the progress of the Shakey project
itself (Peter Hart); and (3) the impact of the Shakey
project on the future of AI (Nils Nilsson).

Celebrating Shakey and Its Builders
Edward A. Feigenbaum

The history of science is a source of knowledge of the
complex search for solutions to difficult problems.
Not only is this history endlessly intriguing and awe-
inspiring; but also it should be of particular interest
to AI scientists because this kind of complex problem
solving and discovery is at the heart of many of our
theories of mental activity.

Life is lived in the moment. Everything else is
memory and stories. The word history itself contains
the word story. This talk is constructed as several sto-
ries of the Shakey project situated in its time, and
among other landmark AI projects.

I have been lucky enough to have lived and
worked through the entire 60 years of AI, from early
1956, months before the famous “founding” Dart-
mouth Conference, to today’s AAAI-2015. My stories
are drawn from those 60 years of memories, helped,
but only a little, by the best memory assistant ever,
the web.

My role today is to set the historical context in
which the Shakey project was born, lived a remark-
able but short life, and was terminated. Shakey
research set the stage for decades of important exper-
imental work in AI and robotics, and in other AI
applications that will be mentioned later by Nils Nils-
son.

I phoned several well-known robotics scientists to
ask about the grandchildren of Shakey. All of them
said the robots they developed were grandchildren of
Shakey.

As shown in an original Shakey video, we remem-

ber Shakey as slowly and laboriously computing
models of its environment; planning; moving and
navigating its way around obstacles toward a goal on
the far side of one large room.

Fast forward to some recent news about grandchil-
dren of Shakey, from Manuela Veloso at Carnege Mel-
lon University (CMU):

I am very pleased to tell you that today, on November
18, 2014, the CoBot robots (3 of them) have jointly
autonomously navigated for 1,000 km in our multi-
floor SCS buildings at Carnegie Mellon University!

A great-grandchild of Shakey, Stanford’s self-dri-
ving car Stanley, the car that drove itself across the
Mojave Desert, is in the Smithsonian National Air
and Space Museum in Washington, DC. Other cars
like Stanley, built at Google, have driven more than
700,000 miles, navigating the San Francisco Bay Area
and other roads, according to the San Jose Mercury
News of November 12, 2014. (Consider this: Shakey’s
traversal, integrated over the whole life of the exper-
iment, probably never made it to one kilometer).

Shakey’s grandchildren on Mars are still having a
productive long life — 11 years into a planned 90-day
visit, semiautonomously assisting planetary scien-
tists. 

I would now like to tell you personal stories that
together made the importance of Shakey research
vivid to me.

First Story
In 1993, a major Japanese corporation asked me to
do an evaluation of the quality of a robotics project
that its research lab been working on for several
years. After signing a nondisclosure agreement, I was
shown a robot that was “humanoid,” but very big
(scary, actually). Tethered to a power source, its
motion was fluid, a marvel of modern electro-
mechanical engineering. 

Though heavy, it could walk reliably without
falling, and it could even climb a flight of stairs. But
this creature had no Mind. It did no symbolic pro-
cessing, no problem solving. It did not have goal-
directed behavior.

There was more than enough space inside for a PC-
sized computer and there was plenty of power. What
this project lacked were scientists and engineers
trained in AI, or even trained in software systems.
There were no young Nils Nilssons, no young Peter
Harts, no young Bert Raphaels or Richard Fikes —
and of course no visionary like Charles Rosen to inte-
grate AI with electromechanical engineering.

And this was 1993, twenty years after the end of the
Shakey project! It can be perilous to ignore scientific
history. 

Second Story 
The Computer History Museum in Mountain View,
California, is the world’s premier museum for the his-
tory of computers and information technology and is
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recognized for its interpretation of that history. In
January 2011, the museum opened its permanent
exhibition, called Revolution. Here is a quote from
the museum’s press release:

Ten years in the making, Revolution is the product of
the Museum’s professional staff collaborating with
designers, content producers and more than 200
experts, pioneers and historians around the world.

Revolution showcases 20 different areas of comput-
ers, computer science, semiconductors, and commu-
nications, from early history to futuristic visions.
Among those 20 areas is one called AI and Robotics.

For each area, the museum staff has chosen one
historical artifact to be the icon exhibit for the area.
For AI and Robotics, the icon is Shakey the Robot,
beautifully exhibited.

The museum could have chosen any one of a
dozen or more landmark AI artifacts. It could have
chosen AI’s first heuristic problem-solving program
(the Logic Theorist of Newell, Shaw, and Simon); or a
speech-understanding program from Reddy; or one
of the early expert systems from our Stanford group;
or Deep Blue, the AI system that beat the world’s
chess champion. It could have … but in the end the
museum chose Shakey.

So let’s put the first story and the second story
together to make a: 

Third Story
SRI’s Shakey work was a decade or two ahead of its
time in demonstrating the power of integrating AI
with robotics. Remarkably, even today, when robot-
ics is being taught to high school students, and com-
puting and sensors cost almost nothing, most robots
in labs and companies do not have the AI capabilities
that Shakey had in the 1970s.

Historians of the field have given Shakey deserved
recognition, but the field of AI had not. It took a
while for an AAAI national program committee to
recognize this and make room for this celebration. I
want to thank the AAAI-15 program committee, and
hope that this will be a model for bringing forth oth-
er important parts of AI’s history.

Fourth Story
The Shakey Project was done from 1966 to 1972.
What was AI and computer technology like before
and during that period?

There is a generation of younger researchers that
have no idea how few were the powerful ideas of the
first decade of AI (1956 to 1966) to build upon for
new AI systems. Nor can that younger generation
envision the lack of power of the computers that we
had upon which to build these systems.

But there was no lack of enthusiasm, and excite-
ment; no lack of interaction, because almost everyone
in the field knew almost everyone; and we all read
each other’s papers, tech reports, and books. That’s
what it’s like, when a field is small and emerging.

The AI science had a workable set of ideas about
how to use heuristic search to solve problems. But
proving things about heuristic search had to wait
until later (the Shakey group’s A*). Some powerful
successful experiments had been done: the Logic
Theorist; Gelernter’s Geometry Theorem Proving
program; Slagle’s calculus problem solving programs
are examples. These were all on the “cognitive” side
of AI work. On this side, much discussion and ener-
gy was focused on generality in problem solving:
Newell and Simon with means-ends analysis;
McCarthy and other “logicists” with theorem prov-
ing.

On the “perceptual” side of AI work, a similar sto-
ry can be told about research on vision. There were
several basic workable techniques involving line find-
ing, curve finding, and putting elements together
into logical descriptions of objects. Generality of the
techniques was also an issue, as it still is today.

What did we have with which to do this work? Our
programming languages were great! List processing
was invented at CMU and then made more powerful
and beautiful in LISP at the Massachusetts Institute of
Technology (MIT). But there was almost no interac-
tion between people and computers. Time-shared
interaction did not become available to most
researchers in this first decade.

Try to imagine this about computer processing
power and memory: I did my thesis work on an IBM
650 computer in the late 1950s: maximum 2500
operations per second; memory was 20,000 digits
(what we would now call bytes). Not only your pro-
gram, but your language interpreter had to fit into
this memory. There was no virtual memory.

In 1959, the IBM’s large multimillion-dollar tran-
sistorized computer was introduced. It ran at 100K
FLOPS, and had about 150K bytes of main memory.
The largest DEC computer that would have been
available in 1966 for the Shakey group to buy was the
PDP-6, which operated at 250,000 additions per sec-
ond with a memory of about 150K bytes.

Compare these numbers with, say, today’s Apple
MacPro at four gigaops/sec with memory of 16 giga-
bytes; or even today’s smartphones at about 1
gigaop/sec but with memories going up to 128 giga-
bytes.

Fifth Story
All projects end, even the great ones. The DARPA
funding pendulum for support of AI swung away
from robotics and toward both knowledge-based sys-
tems and the national speech understanding project.
As funding shifted, SRI continued to do world-class
work in both of these other themes of the 1970s.

Final Story
The Shakey project, as cutting edge work in comput-
er science, inspired young people to do great things.
In an email to Eric Horvitz, former president of AAAI,
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Figure 1. Charles A. Rosen and the “Automaton.”

let me quote from one of these people, a junior in
high school at the time. He and a high-school friend
traveled to visit the Shakey project in 1971, unan-
nounced, but were welcomed by the Shakey team.

I was inspired by the Shakey video from SRI. I actual-
ly went down and visited when I was a junior in high
school and they showed me the lab.

Shakey was pretty cool — vision, modeling, planning. It
decided to move things around so it could go up a ramp.

Paul — do you remember how we got this video?

The “Paul” is … Paul Allen; and the author of the
quote is Bill Gates. 

Making Shakey
Peter E. Hart

The proposal that launched the Shakey project was
submitted by the Artificial Intelligence Center of
Stanford Research Institute (now SRI International)
in January, 1965. SRI proposed to develop “intelli-
gence automata” for “reconnaissance applications.”
But the research motivation — and this was the inspi-
ration of Charles A. Rosen, the driving force behind
the proposal — was to develop an experimental test
bed for integrating all the subfields of artificial intel-
ligence as then understood. SRI wanted to integrate
in one system representation and reasoning, plan-
ning, machine learning, computer vision, natural
language understanding, even speech understand-
ing, for the first time. 

Readers interested in technical details of Shakey’s
development will find an excellent summary1 in an
SRI report. A 25-minute video, made by the Shakey
team at the time, is available.2

The design of the “automaton,” as it was initially
called (perhaps out of a justifiable concern that
“robot” sounded like science fiction, which it was
before Shakey), was governed by two ground rules:
First, in order to keep it mechanically as simple as
possible, no arm was installed. And second, to avoid
issues of miniaturization, the design evolved as an
electronics rack on wheels with a sensor assembly
mounted on top.

The project team was well aware of Shakey’s limit-
ed mechanical and sensory capabilities, and designed
a correspondingly simple experimental environment
consisting of half a dozen rooms populated with
large, geometric blocks. The blocks were painted so
that edges were visible to the low-resolution TV cam-
era, while still being sufficiently reflective for our
homemade laser rangefinder to work. We also used
dark baseboards, again for visibility, and exploited
them to update the position error that accumulated
in the dead reckoning process that relied on Shakey’s
stepping motors. 

Our first computer was an SDS 940, an early com-
mercial time-shared mainframe (whose main memo-
ry was smaller than the L2 cache of most laptops). In

1970 we upgraded to a more powerful DEC PDP-10.
Shakey talked to the PDP-10 through a communica-
tions processor, and the system was one of the hand-
ful of nodes that constituted the birth of the
ARPANET. Around this time we embarked on a com-
plete rewrite of much of Shakey’s software, while
making only minor upgrades to the robot hardware.
In the next section we describe this version 2 of
Shakey.
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Figure 2. Shakey with Components Labeled.
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Figure 3. Triple Exposure of Shakey Moving Among Boxes.

Shakey’s Control Software
There were two big ideas behind version 2. The first
idea was to represent Shakey’s world by statements in
the first-order predicate calculus, augmenting a form
of grid model that was a key component of the first
version (figure 4). 

The second idea was to structure Shakey’s control
software as a series of layers, the first time this design
was used to control a robot (figure 5). In the follow-
ing we briefly describe each layer, beginning with the
low-level actions.

Low-Level Actions
Low-level actions like ROLL and PAN talked directly
to Shakey’s hardware (figure 6). Also in this layer are
actions like PANTO, which rotates the “head” to a
specified orientation.

Intermediate-Level Actions: Markov tables
Above this level are intermediate-level actions like
GOTHRUDOOR. These actions are put in their own
layer because all of them are represented as Markov
tables (figure 7).

One interprets a Markov table by scanning down
the left column until the first true condition is
reached, executing the corresponding action, and
then looping back to the top. Accordingly, Markov
tables have an inherent perseverance: they keep try-
ing to do something useful. (This account is slightly
simplified, but the looping behavior is fundamental
and, as we’ll see, an important feature of these
tables.)

If these intermediate-level actions were the end of
the software story, Shakey would be very limited in
what it could achieve. It would only be able to
achieve goals that require just a single prepro-
grammed action. To do more, Shakey has to be able
to compose a sequence of actions into a plan. That’s
the job of STRIPS, the Stanford Research Institute
Problem Solver, which constitutes the next higher
software level.

STRIPS, the Stanford Research 
Institute Problem Solver
STRIPS came about by combining two big ideas of the
day. The first was the planning strategy called means-
ends analysis, as exemplified by the General Problem
Solver program of Newell and Simon.

The second big idea was theorem proving in the
predicate calculus and its application to question
answering systems, as exemplified by the work of
Cordell Green. Richard Fikes and Nils Nilsson com-
bined these ideas to create STRIPS (Fikes and Nilsson
1971), which applied means-ends analysis to predi-
cate calculus representations (figure 8).

PLANEX, the Plan Execution Executive
Shortly after designing STRIPS, the SRI team found a
way to generalize a STRIPS plan by replacing constants
in the plan with variables. They also invented a data
structure called a triangle table that represents the
internal dependencies of a generalized plan. These

constructs formed the basis of PLANEX, the Plan Exe-
cution Executive that is the top layer of Shakey’s con-
trol software (Fikes, Hart, and Nilsson 1972).

Using this software machinery, PLANEX could
monitor the real-world execution of a plan. It could
detect if something had gone wrong, and could
replan from that point, reusing portions of the exist-
ing plan wherever possible. It could even be “oppor-
tunistic”: If by chance Shakey was closer to achieving
its goal than anticipated, it could capitalize on its
good fortune.

This error detection and recovery ability was a
critically important part of Shakey’s control soft-
ware. A chasm separates planning for a physical
robot, that has to execute plans in the real world
where things often go wrong, and an “abstract”
planner that merely needs to print out a symbolic
plan once it is computed. The Plan Execution Exec-
utive, together with those persevering Markov
tables, was the solution to the problem of achieving
robust, real-world plan execution.

Computer Vision
The initial project plan did not call for intensive
research in computer vision. Rather, the plan was to
integrate existing computer vision techniques into
the experimental test bed. But, as it turned out, very
little technology was available, so a focused effort in
computer vision was started.

One important result of this work was the inven-
tion of what could be called the modern form of the
Hough transform for finding lines in images (Duda
and Hart 1972). This result came about by combining
two concepts that on the surface appear unrelated.

The first idea is contained in a patent by Paul
Hough, in which he described a transform from
points in an image plane to straight lines in a trans-
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Figure 4. Predicate Calculus Model Fragment with Plan View of World and Grid Model
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Figure 6. Low-Level Actions.
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Figure 7. Markov Table for GOTHRUDOOR.

infrontof(door) /\eq(s,OPEN)

near(door) /\eq(s,OPEN)

near(door) /\eq(s,UNKNOWN)

eq(s,CLOSED)

T

bumblethru(room1,door,room2)

align(room1,door,room2)

doorpic(door)

return   [fail]

navto(nearpt(room1,door))

ActionCondition

form space. Intersecting lines in the latter correspond
to collinear points in the form. But a problem of infi-
nite slopes arises that makes this transform compu-
tationally unwieldy (figure 9). 

The second idea comes from an obscure branch of
19th century mathematics called integral geometry.
Mathematicians had theoretical reasons for using an
angle-radius parameterization of a line, rather than

the more familiar slope intercept used by Hough.
Peter Hart noticed that by replacing Hough’s linear
transform with a sinusoidal one, not only is the prob-
lem of infinite slopes avoided, but the new transform
is invariant to choice of coordinate accesses. Hart and
Richard Duda also extended this method to detect
analytic curves in images, and this transform has
been used ever since.



Navigation and the A* Algorithm
Shakey had to find its way around, so several short-
est-path algorithms were developed. One, called A*
by its creators, Peter Hart, Nils Nilsson, and Bertram
Raphael, had two very desirable properties. It can be
rigorously proved that (a) it always finds the shortest
path, and (b) that it does so while considering the
smallest possible number of alternatives. In non-
mathematical shorthand, we can say that it always
works and it’s computationally efficient.

One would think that such a strong result would
be eagerly accepted by any reputable publication, but
it’s perhaps a sign of those times that just the oppo-
site was the case. The A* manuscript was rejected by
the most prestigious journals of the day. Looking at
those old reviews, we can speculate that review edi-
tors sent the manuscript to mathematicians, because
of all those intimidating-looking theorems. But
mathematicians were unimpressed because the
proofs were limited to graphs with only a finite num-
ber of nodes. It seemed to the authors at the time that
mathematicians saw no difference between a graph

with ten nodes and one with ten trillion nodes, but
to computer scientists that difference matters.

The paper (Hart, Nilsson, and Raphael 1968) was
finally accepted by the IEEE Transactions on Systems
Science and Cybernetics, where it eventually got
noticed and continues to be referenced more than 45
years after it was published.

The World Back Then
The foregoing gives a glimpse of some (though by no
means all!) of the work done by the Shakey project
team. To place this work in a broader societal con-
text we can take a brief look at the intellectual and
cultural climate of the time.

In 1970, Life,3 a popular magazine of the day, ran
a big story about Shakey (figure 10). The author, jour-
nalist Brad Darrach, seemed to hyperventilate a bit,
with a subtitle, “the fascinating and fearsome reality
of a machine with a mind of its own.” But while
some like Darrach worried that machines might take
over the world, there were deep skeptics. Hubert
Dreyfus was one, who argued on deep philosophical
grounds that AI is in principle impossible. And some-
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Figure 8. STRIPS.
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Figure 9. The Hough Transform.
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Figure 10. Shakey Story in Life Magazine.
Photo © by Ralph Crane, The LIFE Picture Collection.

where between Brad Darrach and Hubert Dreyfus
were labor union leaders who worried that robots
might some day take manufacturing jobs. 

Charlie Rosen was undaunted by the critics, noting
that there will always be “naysayers,” as he called
them, whenever something new is done. The best
response is to push onward.

Shakey’s Visitors
The Shakey team was generous with its time and wel-
comed virtually any visitor who was interested in the
work. We can get another perspective on the world
back then by viewing it through their eyes. Here are
some examples:

A school group visited, and a teacher asked what our
“real jobs” were. “This robot is your hobby, isn’t it?”

A general visited and asked “Can you mount a 36-inch
blade on that?”

Arthur C. Clark visited just after the movie 2001
appeared, but was more interested in talking about the
New York Times review of the movie than about the
future of robots.

A young high school student drove all the way from
Seattle to Menlo Park, California, to see Shakey.
Decades later Bill Gates recalled being impressed.

A US government auditor visited and asked whether
SRI had indeed taken delivery of billions of “packets of
bits.” This question was followed by others regarding
the state of those packets, including whether there
was any tarnish or corrosion on any of those bits.

The End of the Shakey Project
The Shakey project ended in 1972, not for lack of
exciting ideas to pursue, but because the funding cli-
mate had changed and the research program became
unsupportable. What had been achieved, as viewed
from the perspective of 1972?

While there are likely as many views as there were
project team members, it seems safe to make a few
broad generalizations:

There was an appreciation that many of the individual
results — STRIPS, PLANEX, A*, and the new form of
the Hough transform are good examples — were solid
technical contributions.

Overall, Shakey was a significant achievement, being
both the first mobile, intelligent robot, and also being
the first system that integrated AI software with phys-
ical hardware.

But Shakey’s overall capabilities, both mechanical and
software, didn’t reach the level of the initial aspirations.
This would hardly be surprising, given those lofty early
goals. Indeed, it would take decades before some were
reached, while others remain as research challenges.

Today’s perspective is very different from the view
in 1972. Shakey has had impacts on both current
research and on the everyday lives of all of us that
could not have been recognized or anticipated at the
time. Those impacts are the subject of the remaining
sections of this article.

Shakey’s Legacy
Nils J. Nilsson

“Shakey the Robot” was the first system that inte-
grated artificial intelligence programs (most of which
were newly developed during the project) with phys-
ical hardware. In this part of the panel discussion,



Nils Nilsson used the chart (figure 11) to list some
major achievements of the project. In greatly elabo-
rated and extended form, descendants of some of this
software are still in use today.

Agent Control Architectures
Although hierarchies and layers had previously been
used in software systems, Shakey was the first robot
to be controlled by a layered architecture. As illus-
trated earlier, there were four main layers, namely,
the PLANEX (executive), STRIPS (symbolic planning
system), the intermediate-level actions, and the low-
level actions. Layered control architectures have been
used in several subsequent robot systems, among
them the DS1’s “Remote Agent” (RAX), which con-
trolled a space craft (Bernard et al. 1999), and the
Monterey Bay Research Institute’s (MBARI)
autonomous underwater vehicle (McGann et al.
2008). Of course the control architectures of these
modern systems, although layered as Shakey’s were,
are much more complex.

Robust Action Execution
As described earlier, Shakey used two main tech-
niques to guarantee robust action execution. One
was Markov tables, which scanned a list of conditions
to find the first one that was satisfied by the current
situation and then invoked the corresponding inter-
mediate level action. The second was a structure we

called a “triangle table,” which stored preconditions
and actions assembled by the STRIPS planning sys-
tem. These techniques evoked actions that were both
reactive to the current situation and opportunistic in
unforeseen situations. 

One follow-on to those techniques used by Shakey
is the concept of teleo-reactive (T-R) programs devel-
oped by Nilsson and his students during the 1990s
(Nilsson 1994) (figure 12).

That action associated with the first currently sat-
isfied condition in the list (or tree) is the one that is
executed. But execution continues only so long as
that condition remains the first one currently satis-
fied. As soon as it is no longer satisfied, the list is
scanned again to find the one now first satisfied, and
so on. In the T-R formalism, the actions could them-
selves be T-R programs. Dozens of papers have been
written about T-R programs, one book (Clark and
Robinson 2016) is soon to appear, and many robots
have been controlled by them.4

Another control technique uses structures called
“hierarchical state machines.” Hierarchical state
machines are similar to T-R programs except that
actions are represented by nodes and conditions by
links. Several robots use them, including the PR2
robots developed by Willow Garage and the SaviOne
robot developed by Savioke. There is a Python
library, called SMACH,5 that can be used to build
hierarchical state machines. 
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Figure 11. Shakey’s Achievements.
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Figure 12. Teleo-Reactive Programs.
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Adaptive Cell Decomposition
Shakey used a grid model, such as the one shown in
figure 13,6 to map the obstacles in its environment.
If a cell is not completely empty or completely full, it
is divided into smaller cells and so on until one of
these conditions is met for all cells. We believe
Shakey’s was the first use of an adaptive grid model.
Adaptive cell decomposition is still used in robot
navigation and in computer-aided design and manu-
facturing.

STRIPS Rules
STRIPS was the system Shakey used for generating
plans to accomplish goals. Figure 14 shows a STRIPS
rule for modeling the action of moving a toy block
from C to B. The preconditions must be satisfied before
the action can be applied, and the terms on the delete
list can no longer be guaranteed to be satisfied after
the action is applied, so they are deleted from
Shakey’s post-action model of the world. The terms
on the add list are added to the post-action model.

STRIPS rules (or their derivatives) are used in most
modern planners. (The STRIPS paper gets over 5000
citations on Google Scholar, and “STRIPS-style plan-
ning” gets over 3410 results on Google.) It’s the rules
that are used, not the STRIPS program itself. STRIPS
rules were a practical solution to the “frame prob-
lem” — inherent in the use of the “situation calcu-
lus,” proposed by McCarthy and Hayes (1969) for
generating plans.

Hierarchical task networks (HTNs) are much used
and powerful planning systems that use STRIPS
rules.7 These systems assemble plan steps into net-
works of actions, some of which can be executed in
parallel and others that must be executed serially. We
show an example in figure 15.

SIPE-2,8 O-Plan (Currie and Tate 1991), and
SHOP29 are examples of implemented HTNs. Among
other important applications of HTNs, SIPE-2 has
been used for production planning at an Australian
Brewery.

Some video games make use of STRIPS rules and
HTNs for planning the actions of nonolayer charac-
ters (NPCs).10

Heuristic Search and A*
A* is a heuristic search algorithm developed during
the Shakey project for efficiently searching a graph of
navigation waypoints. It uses an evaluation function
to rank the nodes reached during search and contin-
ues the search below the best-ranked node. The eval-
uation function for a node, n, is the sum of the cost
of the links traversed already on the way to n plus an
estimate of the cost from n to a goal node.

There are lots and lots of descendants and variants
of A*. Here is a list of just some of them: D*, Field D*,
Theta*, Real-Time A*, Iterative Deepening A*, Life-
Long Planning A*, Simplified Memory Bounded A*,
and Generalized Adaptive A*. Richard Korf at UCLA

and researchers at Carnegie-Mellon University have
played major roles in the development of many of
these.

The Mars rover, Curiosity, uses Field D*, a deriva-
tive of A* written by CMU’s Tony Stentz and his stu-
dent, Dave Ferguson (now with Google). It is capable
of planning paths around obstacles in unknown, par-



tially known, and changing environments in an effi-
cient, optimal, and complete manner. 

Most route-finding algorithms in maps use vari-
ants and elaborations of A*. Elaborations include the
use of hierarchies, saved routes (which don’t need to
be recomputed), and much more. 

In other uses of A*, linguists Dan Klein and Chris
Manning write, “The use of A* search can dramati-
cally reduce the time required to find a best parse …”
(Klein and Manning 2003). And Steven Woodcock, a
computer games consultant, wrote that “A* is far and
away the most used … and most useful … algorithm
for [nonplayer-character] path finding in games
today …. developers have noted that they make more
use of A* than any other tool for pathfinding.”11

(Actually, we are gratified that the major applications
of A* are on problems a bit more serious than video
games!)

Computer Vision
As mentioned earlier, we had hoped that we could
use then-existing computer vision routines to
process images from Shakey’s camera. But the state of
computer vision was quite primitive at that time, so
we did have to develop some routines of our own.
One, which influenced subsequent vision systems,
was a system for segmenting images into “like-
appearing regions” (Brice and Fennema 1970). An
example of the regions found for some of the objects
in Shakey’s environment is illustrated in figure 16.
Segmentation is still a major technique used in com-
puter vision today.12

Another result of work on computer vision during
the Shakey project was the development of the
“modern form” of the Hough transform for finding
lines and curves in images. As mentioned earlier,
Richard Duda and Peter Hart modified the original
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Figure 14. Application of a STRIPS Rule.
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version of the Hough transform to include circles and
analytic curves and to use a rho-theta parameteriza-
tion (Duda and Hart 1972). Their paper gets 4500 hits
on Google Scholar.)

The modern form of the Hough transform is used
in automobiles to detect lane markings to warn the
driver about drifting out of his or her lane.13

Conclusions
One reason for the success of the Shakey project and
for its extensive legacy is that we were the first group
to think that developing a robot that could perceive its
environment and make and execute plans was a feasi-
ble idea. At the time, there was little existing software
for us to use, so we had to invent what we needed. It

turned out that the new inventions were ones that had
broad applicability once people heard about them.

Another reason for our success is that we had a
very talented team of AI researchers and software
developers, along with people who could make the
connections between software and hardware (figure
17). Some team members had a reunion at SRI Inter-
national in November 2014.

There are still many problems in AI where talented
researchers could be first. An idea mentioned by Nils-
son during the panel is to develop an “action hierar-
chy” analogous to the deep learning hierarchies that
are being used for vision and speech recognition.14

Some of these are said to be rough models of the per-
ceptual part of the neocortex. But the cortex also coor-
dinates and plans actions, as illustrated in the diagram

Figure 15. A Hierarchical Task Network.
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Figure 16. Region Finding as Used by Shakey’s Vision System.
Reprinted with permission from Claude Brice and Claude Fennema, Scene Analysis Using Regions. Artificial Intelligence 1970 (3-4).
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(figure 18).15 How about developing a
“deep action” system, with cross con-
nections to the perceptual hierarchy
and using (perhaps) hierarchical rein-
forcement learning to learn the
actions?16 One could then try to use
both hierarchies to control a robot.

Notes
1. www.ai.sri.com/pubs/files/629.pdf.

2. ai.stanford.edu/~nilsson/Shakey.mp4.
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4. For more information, see the T-R website
teleoreactiveprograms.net.

5. See wiki.ros.org/smach. 

6. The figure is from Nils J. Nilsson, “A
Mobile Automaton: An Application of Arti-
ficial Intelligence Techniques,” Proceedings
of the International Joint Conference on Arti-
ficial Intelligence, 7–9 May, 1969. Washing-
ton, DC. Los Altos, CA: William Kaufmann
Inc.

7. See en.wikipedia.org/wiki/hierarchical_
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8. See www.ai.sri.com/~sipe.

9. See www.cs.umd.edu/projects/shop.

10. See aigamedev.com/open/review/plan-
ning-in-games.
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Figure 17. Some of the People Who Worked on Shakey
Front Row, left to right: Richard Fikes, Helen Chan Wolf. Rear row, left to right: Charles A. Rosen, 

Bertram Raphael, Richard O. Duda, Milt Adams, Jerry Gleason, Alfred E. (Ted) Brain, Peter E. Hart, and Jim Baer.

11. Email from Steven Woodcock sent to
Nilsson on 6/14/2003.

12. See, for example, en.wikipedia.org/wiki/
Image_segmentation.

13. For a video of the Hough Transform in
action, see www.youtube.com/watch?v=
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14. See, for example, www.cs.toronto.edu/
~hinton/.

15.  Diagram from willcov.com/bio-con-
sciousness/sidebars/Perception—Action%
20Cycle.htm.
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The International Competition on Knowledge Engineer-
ing for Planning and Scheduling has been running
since 2005 as a biennial event promoting the develop-

ment and importance of the use of knowledge engineering
methods and techniques within this area. The aim of the
competition series is to foster developments in the knowl-
edge-based and domain modeling aspects of automated plan-
ning, to accelerate knowledge engineering research, and to
encourage the creation and sharing of prototype tools and
software platforms that promise more rapid, accessible, and
effective ways to construct reliable and efficient automated
planning systems.

ICKEPS 2016 aimed specifically (1) to provide an interest-
ing opportunity for researchers and students to experience
the challenges of knowledge engineering; (2) to motivate the
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The Fifth International Competition on
Knowledge Engineering for Planning and

Scheduling: Summary and Trends

Lukáš Chrpa, Thomas L. McCluskey, Mauro Vallati, Tiago Vaquero

n We review the 2016 International
Competition on Knowledge Engineering
for Planning and Scheduling (ICKEPS),
the fifth in a series of competitions
started in 2005. The ICKEPS series
focuses on promoting the importance of
knowledge engineering methods and
tools for automated planning and
scheduling systems.
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planning community to create and improve tools
and techniques for supporting the main design phas-
es of a planning domain model; and (3) to provide
new interesting and challenging models that can be
used for testing the performance of state-of-the-art
planning engines. In order to achieve the mentioned
aims, ICKEPS 2016 focused on on-site modeling of
challenging scenarios, performed by small teams.

This article summarizes the ICKEPS held in 2016.
More information about the competition, including
complete scenario descriptions, can be found on the
ICKEPS 2016 website.1

Format and Participants
ICKEPS 2016 format included two main stages: On-
site modeling and demonstration.

During the on-site modeling stage, each team
received a set of scenarios description and had to
exploit the available time for generating the corre-
sponding models. Four scenarios were provided. Two
of them — Star Trek, Rescue of Levaq, and Round-
about — required temporal constraints, while the
other two  — RPG and Match-Three, Harry! — only
required classical reasoning. Participants were free to
select the scenarios to tackle and had no restrictions
on the number and type of tools that can be used.
The only constraints were on the available time (six
hours were given) and on the maximum size of teams
(at most four members).

The day after the on-site modeling, each team had
10 minutes to present and demonstrate the aspects
of the knowledge engineering process they exploited
for encoding the scenarios. Specifically, teams were
expected to discuss the division of work among team
members, the tools used, key decisions taken during
the encoding, and the issues they faced.

Teams were then ranked by a board of judges,
which included Minh Do (NASA, USA), Simone Frati-
ni (ESA, Germany), Ron Petrick (Heriot-Watt Univer-
sity, UK), Patricia Riddle (University of Auckland,
New Zealand), and David Smith (NASA, USA). The
evaluation process will be described in the corre-
sponding section below. Noteworthy, judges were
presented during the demonstrations session and
had the opportunity to ask questions and discuss rel-
evant aspects of the knowledge engineering process
the teams followed.

The competition had two tracks: the PDDL track,
where teams had to generate PDDL models using
PDDL features up to those introduced in version 3.1,
and the Open track, where teams could encode mod-
els in any other language. However, for the open
track, participants were also required to provide a
planner able to deal with the selected language. Six-
teen people, divided into six teams, took part in the
competition. One team entered the Open track,
while the remaining five decided to participate in the
PDDL track.

Participants came from institutions in Australia,
Brazil, Canada, USA, Japan, and the United Kingdom.
The level of expertise of participants covered various
academic ranks, that is, Ph.D. students, lecturers,
research fellows, and professors. One team was com-
posed only of industry experts.

Evaluation
The board of judges evaluated each team by consid-
ering two main aspects: the exploited knowledge
engineering process and the quality of the generated
models.

The knowledge engineering process was assessed
once for each team, regardless of the number of sce-
narios the team was able to encode. Three main cri-
teria were taken into account: teamwork, method,
and tools. Teamwork focused on the degree of coop-
eration and effective collaboration among team
members. In terms of the method, effectiveness and
systematicity of the knowledge engineering process
were assessed. Finally, the innovation and originality
of exploited tools, and their actual usefulness (that is,
the support their use provided to the process) were
evaluated.

To assess the quality of the generated models, the
organizers provided the judges with the models the
teams had submitted along with quantitative and
qualitative information about these models. Qualita-
tive information included evaluations about correct-
ness, (that is, whether all the requirements were cor-
rectly handled); readability (how easy it was to read
and understand the model); generality (if the domain
model could be reused on different problem
instances); and originality, where the use of innova-
tive ways for modeling element or interactions was
evaluated. Quantitative information included statis-
tics on the number of types, number of predicates,
number of operators, total number of lines, and the
average (maximum) number of parameters, effects,
and preconditions per operator. Moreover, in the
PDDL track, the run time and quality of solutions
generated by 10 well-known planners (5 classical and
5 temporal) were provided to judges. For teams par-
ticipating in the Open track, the corresponding per-
formance of the planner(s) submitted by the partici-
pants were provided to judges.

In accordance with the aims of the competition,
emphasis was given to good practice in knowledge
engineering, with particular regard to the degree of
cooperation between the members of each team. For
this reason the judges used a 0–100 scale, where up to
45 points could be awarded for the knowledge engi-
neering process, and the remaining 55 points could
be assigned according to the number and quality of
generated models, as follows: Star Trek, the Rescue of
Levaq (up to 20 points); Roundabout (up to 15
points); Match-Three, Harry! (up to 10 points); and
RPG (up to 10 points).
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Results
The board of judges acknowledged the efforts of all
the competitors. Honorable mentions were then
awarded in two categories:

The Innovative Methodology Award was presented
to Emre Savas and Michael Cashmore. This team gen-
erated a complete domain transition graph for the
RPG scenario by hand, analyzed the graph to remove
bad states and transitions, and then created a com-
pact and elegant model for the domain.

The Dilithium Crystal Award was presented to Sara
Bernardini, Maria Fox, and Chiara Piacentini. This
team was the only one to produce a working model
that correctly captures most of the requirements of
the Star Trek Scenario, which was the most difficult
domain in the competition.

The Overall Winner Award was presented to the
team composed of Nir Lipovetzky and Christian
Muise. This team demonstrated a great ability to
develop high-quality models quickly in multiple sce-
narios, while utilizing, and at the same time enhanc-
ing, model development tools for PDDL.

Given the positive feedback from competitors and
judges, we believe that ICKEPS 2016 was a success. It
is therefore envisaged that future ICKEPS will exploit
a similar format.

Reflections
We observed that the generated models showed sig-
nificant differences, even on easier scenarios, where,
for instance, the number of operators ranged from
two to seven, with remarkable impact on readability
and generality. The impact on different planning
approaches has to be assessed, in order to advance
the state-of-the-art of knowledge engineering.

Two items were of concern at ICKEPS. First, most
teams did not use any tools (except text editors), and
thus relied only on their expertise. Second, existing
tools do not effectively support cooperation: to cope
with the growing complexity of planning applica-
tions, planning experts have to cooperate and coor-
dinate the knowledge engineering process. In addi-
tion, the number of participants of ICKEPS is still not
very large, especially when compared with the latest
edition of the International Planning Competition
(Vallati et al. 2015). This suggests that the planning
community underestimates the importance of
knowledge engineering, despite of its enormous
impact on applicability of domain-independent
planning in real-world scenarios.

Reference
Vallati, M.; Chrpa, L.; Grzes, M.; McCluskey, T. L.; Roberts,
M.; and Sanner, S. 2015. The 2014 International Planning
Competition: Progress and Trends. AI Magazine 36(3): 90–
98.

Lukáš Chrpa is a research fellow at University of Hudders-
field. His main research interests are in the area of AI plan-
ning, machine learning, and knowledge engineering. He
was a co-organizer of the 2014 International Planning Com-
petition (IPC).

Thomas L. McCluskey is a coleader of the PARK research
group of the University of Huddersfield, UK. His research
interests include automated plan generation, domain mod-
eling, information extraction, knowledge engineering,
machine learning, data mining, requirements validation,
and formal specification. He cofounded the Knowledge
Engineering for Planning and Scheduling competitions. He
also co-organized IPC-2014.

Mauro Vallati is a senior lecturer at University of Hudders-
field, UK. His main research interest is in AI planning. He
was a co-organizer of the 2014 International Planning Com-
petition.

Tiago Vaquero is a postdoctoral fellow at MIT CSAIL and
Caltech. His research interests include autonomous systems,
automated planning and scheduling, knowledge engineer-
ing, robotic space exploration, artificial intelligence, and
robotics in general. He was a co-organizer of the 2012 edi-
tion of the International Competition on Knowledge Engi-
neering for Planning and Scheduling.

Interesting in Hosting 
ICWSM-19?

AAAI, in cooperation with the ICWSM Steering
Committee, is currently seeking proposals for a
host city for the Thirteenth International AAAI
Conference on Web and Social Media (ICWSM-
19). The conference is typically held Monday –
Thursday during the timeframe of mid-May
through mid-June. Final selection of a site will
be made by August 2017. For more information
about proposal requirements, please write to
icwsm19@aaai.org.

Note: ICWSM-18 will be held at Stanford 
University in Palo Alto, California USA. 
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According to folk definitions of planning and schedul-
ing commonly used in the AI community, planning is
deciding what to do, while scheduling is deciding when

and how to do it. Neither of these terms are fundamental cat-
egories. Scheduling applications are simply those that can be
addressed using scheduling tools and techniques. Using a few
examples drawn from personal experience spanning more
than two decades, in this column I provide one perspective
on how those tools and techniques have evolved, as well as
the resulting effect on the scope and scale of applications that
can be addressed.

Between 1993 and 1995, a group of us at Honeywell imple-
mented a constraint-based scheduler for the Airplane Infor-
mation Management System (AIMS) that was developed for
the Boeing 777. The initial AIMS scheduling problem encom-
passed 29,000 discrete activities, subject to 97,000 complex
metric constraints specified by AIMS applications developers.
Generating feasible schedules was an essential requirement
for operating the 777, potentially threatening a Boeing
investment of almost 10 billion dollars. The scale and com-
plexity of this problem were unprecedented, and there were
very few applicable tools or standards. Input requirements
were provided as text, with a semantics negotiated and main-
tained through frequent discussion. As this was one of the
earliest schedulers based on the simple temporal problem
(STP), we implemented methods for incremental updates and
bounds computation, as well as integrating the STP model
with a large set of discrete decision variables. The solver used
a locally implemented adaptation of Ginsberg’s recently pub-
lished Dynamic Backtracker, a systematic search algorithm
combining stack reordering (not just conflict-directed back-
jumping) with what would later be called clause learning, as
well as several customized constraint propagators (Boddy and
Goldman 1994). Notable in this development effort was the
extended process of negotiation with the AIMS developers as
they sought to preserve functionality, repeatedly providing
sets of requirements that we demonstrated to be unsatisfi-
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The Evolution of 
Scheduling Applications 

and Tools

Mark Boddy

n The available tools and support for
building planning and scheduling sys-
tems and applications have been steadi-
ly improving for decades. At the same
time, the scope, scale, and complexity of
the problems to be addressed have been
increasing. In this column, I discuss sev-
eral different scheduling applications
developed over the past 25 years and
then describe the tools and techniques
used in addressing these problems,
showing how improved tools simplified
(and in some cases enabled) the solu-
tion of problems of increasing difficulty.



able, using tools implemented specifi-
cally for that purpose.

Subsequently, tooling support for
building planning and scheduling sys-
tems became more prevalent. For
example, ilog Solver and Scheduler
provided constraint modeling and
solving capabilities, including special-
ized implementations of global con-
straints such as all-different. These
tools used an extension of the Prolog
goal stack, rendering them of limited
utility where explicit control of the
search process was required. Advances
in understanding the relationship
between propositional reasoning and
integer programming widened the set
of solvers available, while improve-
ments in tools like CPLEX and a range
of constraint-satisfaction problem
(CSP) solvers including but not limited
to iLog tools such as OPL further
reduced the amount of implementa-
tion needed for a new application.
Scheduling-specific ontologies and
specialized constraints, custom control
over constraint propagation, and sup-
port for backjumping during search
made these systems increasingly use-
ful. By 2010, these improvements in
integration and scale enabled us (now
at Adventium) to implement a system
modeling processing and communica-
tion demands in large networks
(10,000 to 1,000,000 nodes). Newly
developed tools and standards played
a key part: the domain and problem
instances were represented in the
Architecture Analysis and Design Lan-
guage (AADL), from which we extract-
ed a set of constraints in the high-lev-
el constraint language MiniZinc,
translated from there into a linear pro-
gram, which solved in single-digit
minutes, using stock hardware
(Michalowski, Boddy, and Carpenter
2010).

Then in 2013, very nearly 20 years
after the AIMS scheduler, we con-
structed a prototype scheduler for a
modern avionics system for a large
commercial jetliner. The problem was
larger, more complex, and significant-
ly more diverse than that addressed by
the AIMS scheduler. Instead of a single
integrated network with external sen-
sor interfaces, there were multiple net-
works with gateways between them.
Instead of one communication proto-

col (and thus one scheduling model)
there were several. Instead of functions
preassigned to processors, that assign-
ment was part of the problem. Multi-
ple, gatewayed networks with different
communication protocols were a par-
ticular issue, requiring enforcement of
timing guarantees across multiple
asynchronous boundaries. Fortunately,
the available tools were much
improved as well, to the point where
the application could be assembled
largely by integrating existing tools.
Instead of hand-rolled domain models,
we used AADL. Instead of manual inte-
gration of discrete and continuous
parts of the problem as had previously
been required, we used satisfiability
modulo theories (SMTs). Instead of
hand-implemented search control, we
used an off-the-shelf solver. The largest
remaining implementation task was to
translate from the AADL model to a
formulation suitable for the SMT
solver.1 This tool remains in a proto-
type form, but the models and integra-
tion methods have been used for other
applications.

Most recently, we have integrated a
scheduling engine into design tools for
integrated, heterogeneous embedded
software systems. These tools have
been evaluated by system developers,
and are now being provided as Gov-
ernment Furnished Equipment for the
preliminary design phase of a major
aircraft development program.2 In our
view, this kind of integration is where
the main challenge of the future lies.
Public infrastructure is increasingly
distributed and integrated, while
embedded systems grow increasingly
complex and interdependent. Individ-
ual components of these large systems
may have very different dynamics and
may be provided by vendors desiring
to protect proprietary information.
Addressing these problems requires
integrating diverse tools, sharing limit-
ed information, with a rigorous seman-
tic mapping among them.

Over the past 20 years, there has
been significant progress in the tools
available to support all aspects of
defining and implementing con-
straint-based scheduling applications.
This process is ongoing; examples of
current research technologies with
promise for real applications include
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various refinements of Monte-Carlo
tree search, and the synthesis of spe-
cific algorithms for problem instances,
as for example in ongoing work by
Doug Smith at Kestrel. At the same
time, the increasing complexity and
integration of computing systems con-
tinues to provide more, larger, and
more complex problems to solve. This
class of applications should provide a
fruitful source of new modeling and
solution challenges for years to come.

Notes
1. See nari.arc.nasa.gov/sites/default/files/
Boddy SPICA PhaseI FinalReport r2.pdf

2.  www.adventiumlabs.com/our-work/
products-services/model-based-engineer-
ing-mbe-tools
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The 10th International Web Rule Symposium (RuleML
2016)1 was held at Stony Brook University, Stony
Brook, New York, from  July 6–9, 2016. A total number

of 68 papers were submitted from which 18 full papers, 2
short papers, 3 industry papers, 7 challenge papers, and 3
Doctoral Consortium papers were selected. Moreover, 2
keynote and 2 tutorial papers were invited. Most regular
papers were presented in one of these tracks: Smart Con-
tracts, Blockchain, and Rules, Constraint Handling Rules,
Event Driven Architectures and Active Database Systems,
Legal Rules and Reasoning, Rule- and Ontology-Based Data
Access and Transformation, Rule Induction, and Learning.

Following up on previous years, RuleML also hosted the
6th RuleML Doctoral Consortium and the 10th Internation-
al Rule Challenge, which this year was dedicated to applica-
tions of rule-based reasoning, such as Rules in Retail, Rules in
Tourism, Rules in Transportation, Rules in Geography, Rules
in Location-Based Search, Rules in Insurance Regulation,
Rules in Medicine, and Rules in Ecosystem Research.
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RuleML (Web Rule 
Symposium) 2016 Report

Paul Foder, Guido Governatori, 
José Júlio Alfers, Leopoldo Bertossi

n This article reports on the 10th Inter-
national Web Rule Symposium, which
was held at Stony Brook University in
Stony Brook, New York, from July 6–9,
2016.



This year’s symposium featured four invited
keynote and tutorial talks. Keynote speaker Richard
Waldinger of SRI International presented Natural
Language Access to Data: It Needs Reasoning.
Keynote speaker Bruce Silver of Bruce Silver Associ-
ates spoke on DMN as a Decision Modeling Lan-
guage. Tutorial speaker Neng-Fa Zhou, of City Uni-
versity of New York, presented Programming in Picat,
while tutorial speakers Michael Kifer, Theresa Swift,
and Benjamin Grosof of Coherent Knowledge Sys-
tems presented Practical Knowledge Representation
and Reasoning in Ergo.

As a novelty this year, there was a highly success-
ful colocation between RuleML 2016 and Decision-
CAMP 2016, facilitated by Jacob Feldman and col-
leagues. A total number of 132 participants attended
both conferences and the affiliated subevents. The
colocation was a great opportunity for the rule-based
community and the industrial decision-modeling
community to mingle at one of the several joint
events, including the joint reception on Tuesday July
6 and the Thursday July 8 conference dinner at the
Hilton Garden Hotel. Other joint events included the
joint keynote by Bruce Silver; the joint tutorial by
Neng-Fa Zhou; and the RuleML industry session on
Friday, July 9.

The RuleML 2016 Best Paper Awards were present-
ed to Iliano Cervesato, Edmund Soon Lee Lam, and
Ali Elgazar for their paper Choreographic Compila-
tion of Decentralized Comprehension Patterns and
ro Ho-Pun Lam, Mustafa Hashmi, and Brendan
Scofield for their paper Enabling Reasoning with
LegalRuleML.

The 10th International Rule Challenge Awards
went to Ingmar Dasseville, Laurent Janssens, Gerda
Janssens, Jan Vanthienen, and Marc Denecker, for
their paper Combining DMN and the Knowledge
Base Paradigm for Flexible Decision Enactment, and
Jacob Feldman for his paper What-If Analyzer for
DMN-based Decision Models.

As in previous years, RuleML 2016 was also a place
for presentations and face-to-face meetings about
rule technology standardizations, which this year
covered RuleML 1.02 (System of Families of Lan-
guages and Knowledge-Interoperation Hub) and
DMN 1.1 (OMG DMN RTF).

Details about the RuleML and DecisionCAMP 2016
programs can be found at the Rule ML website.1,2,3

The proceedings are available from Springer. Work-
shop proceedings have been uploaded to the CEUR
proceedings site. The RuleML videos are available
from Youtube.4

We would like to thank our sponsors, whose con-
tributions allowed us to cover the costs of student
participants and invited/keynote speakers. We would
also like to thank all the people who have con-
tributed to the success of this year’s special RuleML
2016 and colocated events, including the organiza-
tion chairs, PC members, authors, speakers, and par-
ticipants.

The RuleML community will join forces with the
RR (Web Reasoning and Rule Systems) community
for a joint conference in 2017, which will be held in
London, UK. RuleML+RR 2017: International Joint
Conference on Rules and Reasoning is being organ-
ized under the leadership of Fariba Sadri and Roman
Kontchakov.
.

Notes
1. 2016.ruleml.org.

2. link.springer.com/book/10.1007/978-3-319-42019-6.

3. ceur-ws.org/Vol-1620.

4 .
www.youtube.com/playlist?list=PLQkz10de_pG8xIi3t_aT0J
HzrgkQhlOba.

Paul Foder was general chair of RuleML. He is a research
assistant professor at Stony Brook University in New York.

Guido Governatori was a program cochair of Rule ML. He
is a senior principal researcher and leads the research activ-
ities on business processes and legal informatics at data61
and the Commonwealth Scientific and Industrial Research
Organisation in Australia.

José Júlio Alfers served as a program cochair of Rule ML.
He is a professor at Universidade Nova de Lisboa, Portugal.

Leopoldo Bertossi served as program cochair of RuleML. He
is a a professor at Carleton University, Canada.
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Mark Your Calendars!

2017 Fall Symposium Series
November 9-11, 2017

The 2017 AAAI Fall Symposium Series will be held Thurs-
day through Saturday, November 9-11, at the Westin
Arlington Gateway in Arlington, Virginia, adjacent to
Washington, DC. Proposals are due April 21, and accepted
symposia will be announced in late May. Submissions will
be due July 21, 2017. For more information, please see the
2017 Fall Symposium Series website. 

www.aaai.org/Symposia/Fall/fss17.php. 

http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=110&exitLink=http%3A%2F%2F2016.ruleml.org
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=110&exitLink=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-42019-6
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=110&exitLink=http%3A%2F%2Fceur-ws.org%2FVol-1620
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=110&exitLink=http%3A%2F%2Fwww.youtube.com%2Fplaylist%3Flist%3DPLQkz10de_pG8xIi3t_aT0JHzrgkQhlOba
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=110&exitLink=http%3A%2F%2Fwww.aaai.org%2FSymposia%2FFall%2Ffss17.php
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=110&exitLink=http%3A%2F%2Fwww.youtube.com%2Fplaylist%3Flist%3DPLQkz10de_pG8xIi3t_aT0JHzrgkQhlOba
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cial Intelligence, held in 1999 in Orlan-
do, Florida, USA. The 2017 recipient of
the AAAI Classic Paper Award was:

Monte Carlo Localization: Efficient
Position Estimation for Mobile Robots.
Dieter Fox, Wolfram Burgard, Frank Del-
laert, Sebastian Thrun

Fox and his coauthors were honored
for pioneering the application of parti-
cle filtering to provide an effective and
scalable method for robot localization.
Dieter Fox presented an invited talk
during the conference in recognition of
this honor.

Dieter Fox is a professor in the
Department of Computer Science and
Engineering at the University of Wash-
ington. He grew up in Bonn, Germany,
and received his Ph.D. in 1998 from
the Computer Science Department at
the University of Bonn. He joined the
UW faculty in the fall of 2000. His
research interests are in robotics and
artificial intelligence, with a focus on
state estimation and perception. He

AAAI Announces 
New Senior Members!

AAAI congratulates the following indi-
viduals on their election to AAAI Senior
Member status:

Alessandro Cimatti (Fondazione Bruno
Kessler, Italy)

Xuelong Li (Chinese Academy of Sci-
ences, China)

Nathan R. Sturtevant (University of
Denver, USA)

This honor was announced at the
recent AAAI-17 Conference in San
Francisco. Senior Member status is
designed to recognize AAAI members
who have achieved significant accom-
plishments within the field of artificial
intelligence. To be eligible for nomina-
tion for Senior Member, candidates
must be consecutive members of AAAI
for at least five years and have been
active in the professional arena for at
least ten years. 

Congratulations to the
2017 AAAI Award 

Winners!
Rao Kambhampati, AAAI President,
Tom Dietterich, AAAI Past President
and Awards Committee Chair, and
Yolanda Gil, AAAI President-Elect, pre-
sented the AAAI Awards in February at
AAAI-17 in San Francisco. 

Classic Paper Award
The 2017 AAAI Classic Paper Award
was given to the authors of the paper
deemed most influential from the Six-
teenth National Conference on Artifi-

heads the UW Robotics and State Esti-
mation Lab (RSE-Lab). Fox is a Fellow
of the AAAI and IEEE, and he received
several best paper awards at major
robotics, AI, and computer vision con-
ferences. 

A Classic Paper Honorable Mention
was also given to the following two
papers:

Combining Collaborative Filtering
with Personal Agents for Better Rec-
ommendations. Nathaniel Good, J. Ben
Schafer, Joseph A. Konstan, Al Borchers,
Badrul Sarwar, Jon Herlocker, John Riedl

Good and his coauthors were honored
for developing an effective way to
combine collaborative filtering and
content filtering to provide better rec-
ommendations to users.

Dr. Nathan Good is Principal of
Good Research and Lecturer at UC
Berkeley’s Ischool’s Master of Data Sci-
ence program. A fundamental goal of
his work is create devices, models serv-
ices and user experiences that are sim-

2017 Feigenbaum Prize Awarded!
AAAI is delighted to announce that Yoav Shoham (Stanford
University, Google), has been selected as the recipient of the
2017 AAAI Feigenbaum Prize. Shoham is being recognized in
particular for high-impact basic research in artificial intelli-
gence — including knowledge representation, multiagent sys-

tems, and computational game theory — and translating the basic research
into impactful and innovative commercial products.

The AAAI Feigenbaum Prize was established in 2010 and is awarded bien-
nially to recognize and encourage outstanding Artificial Intelligence
research advances that are made by using experimental methods of com-
puter science. The associated cash prize of $10,000 is provided by the
Feigenbaum Nii Foundation. 



sis. Prior to Good Research, Nathan
was at PARC, Yahoo and HP research
labs. At Berkeley, he worked with
TRUST and was a member of the 2007
California SOS Top-to-Bottom Review
of Electronic Voting Systems. His
research has been reported on in the
Economist, New York Times, CNN and
ABC and he has testified on his
research before Congress and the FTC.

Learning Dictionaries for Information
Extraction by Multi-Level Bootstrap-
ping. Ellen Riloff and Rosie Jones

Riloff and Jones were honored for
introducing a mutual bootstrapping
technique for information extraction

ple, secure and respectful of people's
privacy. On the commercial side, Dr.
Good has codeveloped technologies
and designs for privacy protection
products that have grown to millions
of users, and has worked with fortune
100 firms to develop privacy and secu-
rity solutions. He is a coauthor of the
UC Berkeley web privacy census, and
contributing author to books on priva-
cy and the user experience of security
systems. He has published extensively
on user experience studies, privacy,
and security related topics and holds
patents on software technology for
multimedia systems and event analy-

that simultaneously learns the seman-
tic lexicon and the extraction patterns.

Ellen Riloff is a professor in the
School of Computing at the University
of Utah. She received her Ph.D. in
computer science from the University
of Massachusetts in 1994. Her primary
research area is natural language pro-
cessing, with an emphasis on informa-
tion extraction, sentiment analysis,
semantic class induction, and boot-
strapping methods that learn from
unannotated texts. She has served on
the NAACL Executive Board, Human
Language Technology (HLT) Advisory
Board, Computational Linguistics Edi-
torial Board, Transactions of the Asso-
ciation for Computational Linguistics
program cochair for the NAACL HLT
2012 and CoNLL 2004 conferences.

For more information about nomi-
nations for AAAI 2018 Awards, please
contact Carol Hamilton at hamil-
ton@aaai.org.

AAAI-17 Program 
Committee Awards
AAAI-17 Program Cochairs Shaul
Markovitch and Satinder Singh recog-
nized the following members of the
AAAI-17 Program Committee for their
distinguished service on the commit-
tee. These individuals went above and
beyond the expectations for the role,
showing exceptional judgment, clarity,
knowledgeability, and leadership in
reaching a consensus decision while
serving on the committee.

Outstanding Senior Program Commit-
tee Members

Thomas Eiter (Vienna University of
Technology, Austria)

Jussi Rintanen (Aalto University, Fin-
land)

Sven Koenig (University of Southern
California, USA)

Outstanding Program
Committee Members

Luis Ortiz (University of Michigan -
Dearborn, USA)

Aris Filos-Ratsikas (University of
Oxford, UK)

Ingo Pill (Graz University of Technol-
ogy, Austria)

Miquel Ramírez (University of Mel-
bourne, Australia)

Christer Bäckström (Linköping Uni-
versity, Sweden)
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AAAI Distinguished Service Award 
The 2017 AAAI Distinguished Service Award rec-
ognizes one individual for extraordinary service to
the AI community. The AAAI Awards Committee
is pleased to announce that this year's recipient is
James A. Hendler (Rensselaer Polytechnic Institute,
USA). Hendler is being recognized for his out-

standing contributions to the field of artificial intelligence
through sustained service to AAAI, other professional societies,
and government activities promoting the importance of Artifi-
cial Intelligence research.

Jim Hendler is the Director of the Institute for Data Explo-
ration and Applications and the Tetherless World Professor of
Computer, Web and Cognitive Sciences at RPI. One of the origi-
nators of the “semantic web,” Hendler was the recipient of a
1995 Fulbright Foundation Fellowship, is a former member of
the US Air Force Science Advisory Board, and is a Fellow of the
AAAI, BCS, the IEEE, the AAAS and the ACM. He is also the for-
mer chief scientist of the Information Systems Office at the US
Defense Advanced Research Projects Agency (DARPA) and was
awarded a US Air Force Exceptional Civilian Service Medal in
2002. Hendler is also the first computer scientist to serve on the
Board of Reviewing editors for Science. In 2010, Hendler was
named one of the 20 most innovative professors in America by
Playboy magazine and was selected as an “Internet Web Expert”
by the US government. In 2012, he was one of the inaugural
recipients of the Strata Conference “Big Data” awards for his
work on large-scale open government data, and he is a columnist
and associate editor of the Big Data journal. In 2013, he was
appointed as the Open Data Advisor to New York State and in
2015 appointed a member of the US Homeland Security Science
and Technology Advisory Committee and in 2016, became a
member of the National Academies Board on Research Data and
Information.

http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=112&exitLink=mailto%3Ahamilton%40aaai.org
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=112&exitLink=mailto%3Ahamilton%40aaai.org


Richard Valenzano (University of
Toronto, Canada)

AAAI-17 Outstanding 
Paper Awards
This year, AAAI's Conference on Artifi-
cial Intelligence honored the following
two papers, which exemplify high
standards in technical contribution
and exposition by regular and student
authors.

AAAI-17 Outstanding Paper Award
Label-Free Supervision of Neural Net-
works with Physics and Domain
Knowledge. Russell Stewart and Stefano
Ermon 

AAAI-17 Outstanding 
Student Paper Award

The Option-Critic Architecture. Pierre-
Luc Bacon, Jean Harb and Doina Precup

2017 Innovative 
Application Awards
Each year the AAAI Conference on
Innovative Applications selects the
recipients of the IAAI Innovative
Application Award. These deployed
application case study papers must
describe deployed applications with
measurable benefits that include some
aspect of AI technology. The applica-
tion needs to have been in production
use by its final end-users for sufficient-
ly long so that the experience in use
can be meaningfully collected and
reported. The 2017 winners are as fol-
lows:

Large-Scale Occupational Skills Nor-
malization for Online Recruitment.
Faizan Javed, Phuong Hoang, Thomas
Mahoney, Matt McNair

Phase-Mapper: An AI Platform to
Accelerate High Throughput Materials
Discovery. Yexiang Xue, Junwen Bai,
Ronan Le Bras, Brendan Rappazzo,
Richard Bernstein, Johan Bjorck, Liane
Longpre, Santosh K. Suram, Robert B. van
Dover, John Gregoire, Carla P. Gomes

Special Computing Community
Consortium (CCC) Blue Sky
Awards
AAAI-17, in cooperation with the CRA
Computing Community Consortium
(CCC), honored three papers in the
Senior Member track that presented
ideas and visions that can stimulate
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Congratulations to the 
2017 AAAI Fellows!

Each year a small number of fellows are recognized for their
unusual distinction in the profession and for their sustained
contributions to the field for a decade or more. An official din-
ner and ceremony were held in their honor during AAAI-17 in
San Francisco, California.

Ronen I. Brafman (Ben-Gurion University, Israel)
For significant contributions to algorithms, representa-
tion, and theoretical foundations of automated decision
making in the areas of preference handling, planning
under uncertainty, multiagent planning, and privacy.

Eduard H. Hovy (Carnegie Mellon University, USA)
For significant contributions to natural language pro-
cessing, including text summarization, semantic analy-
sis, entity/event coreference and sentiment analysis.

Tommi S. Jaakkola (Massachusetts Institute of 
Technology, USA)
For significant contributions to the fields of machine
learning, computational biology and natural language
processing.

Maurizio Lenzerini (Università degli Studi di Roma
"La Sapienza," Italy)
For fundamental contributions to knowledge represen-
tation, description logics, ontologies, and AI and data-
bases, which have become mainstream in AI.

Fangzhen Lin (Hong Kong University of Science
and Technology, Hong Kong)
For significant contributions to formal theories of
knowledge representation, in particular nonmonoton-
ic logics, answer-set programing, and theories of action.

Dale Eric Schuurmans (University of Alberta, 
Canada)
For significant contributions to machine learning,
including foundational methods for model selection,
on-line learning, unsupervised learning and sequential
decision making.

Munindar P. Singh (North Carolina State 
University, USA)
For significant contributions to multiagent systems,
especially via seminal formalizations of the interac-
tions, communications, trust, and commitments
among intelligent agents and services.



honored as part of the AAAI-17 Tech-
nical Demonstration Program. Votes
for these awards were cast by all AAAI-
17 technical registrants. The winners
were as follows: 

Best Technical Demonstration Award
Arnold: An Autonomous Agent to
play FPS Games. Devendra Singh Chap-
lot, Guillaume Lample

Honorable Mention: Technical Demon-
stration

Deep Music: Towards Musical Dia-
logue. Mason Bretan, Sageev Oore, Jesse
Engel, Douglas Eck, Larry Heck

AAAI-17 Student 
Abstract Awards
Two awards were presented to partici-
pants in the AAAI-17 Student Abstract
Program, including the Best Student 3-

the research community to pursue new
directions, such as new problems, new
application domains, or new method-
ologies. The recipients of the 2017 Blue
Sky Idea travel awards, sponsored by
the CCC, were the following:

The AI Rebellion: Changing the Nar-
rative. David W. Aha, Alexandra Coman

Moral Decision Making Frameworks
for Artificial Intelligence. Vincent
Conitzer, Walter Sinnott-Armstrong, Jana
Schaich Borg, Yuan Deng, Max Kramer

Getting More Out of the Exposed
Structure in Constraint Programming
Models of Combinatorial Problems.
Gilles Pesant

AAAI-17 Best Technical 
Demonstration Award
Two technical demonstrations were

Minute Presentation and the Best Stu-
dent Poster. Nineteen finalists in the
Best Student 3-Minute Presentation
category presented one-minute oral
spotlight presentations during the sec-
ond day of the technical conference,
followed that evening by their poster
presentations. Votes for the Best Stu-
dent 3-Minute Presentation award
were cast by senior program commit-
tee members and students, and all
AAAI-17 technical registrants were eli-
gible to cast their votes for the Best Stu-
dent Poster Award. The winners were
as follows:

Best Student 3-Minute Presentation 
Fast Electrical Demand Optimization
under Real-Time Pricing. Shan He,
Mark Wallace, Campbell Wilson, Ariel
Liebman

Honorable Mention: Student 3-Minute
Presentation

Robust and Efficient Transfer Learning
with Hidden Parameter Markov Deci-
sion Processes. Taylor W. Killian, George
Konidaris, Finale Doshi-Velez

Best Student Poster 
Evolutionary Machine Learning for
RTS Game StarCraft. Lianlong Wu,
Andrew Markham

Honorable Mention: Student Poster
An Advising Framework for Multia-
gent Reinforcement Learning Systems.
Felipe Leno da Silva, Ruben Glatt, Anna
Helena Reali Costa

2017 AI Video 
Competition Winners
The eleventh annual AI Video Compe-
tition was held during AAAI-17 and
several winning videos were honored
during the awards presentation. Videos
were nominated for awards in four cat-
egories, and winners will receive a
“Shakey” award. Our thanks go to
Charles Isbell and Scott Niekum for all
their work on this event. 

The winners of the four awards were
as follows:

Best Video
HEALER: Using AI to Raise HIV Aware-
ness among Homeless Youth. Amulya
Yadav, Eric Rice, Robin Petering, Jaih
Craddock, Bryan Wilder, Milind Tambe

Best Robot Video
Aquatic Micro Air Vehicles. Robert Sid-
dall, Alejandro Ortega, Raphael Zufferey,
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2017 Robert S. Engelmore Memorial 
Lecture Award

This award was established in 2003 to honor Dr. Robert
S. Engelmore's extraordinary service to AAAI, AI Maga-
zine, and the AI applications community, and his con-
tributions to applied AI. The annual keynote lecture is
presented at the Innovative Applications of Artificial
Intelligence Conference. Topics encompass Bob's wide

interests in AI, and each lecture is linked to a subsequent article pub-
lished upon approval by AI Magazine. The lecturer and, therefore, the
author for the magazine article, are chosen jointly by the IAAI Pro-
gram Committee and the Editor of the AI Magazine. 

AAAI congratulates the 2017 recipient of this award, David W. Aha,
Naval Research Laboratory, who was honored for pioneering research
contributions and high-impact applications in autonomous systems,
machine learning, and case-based reasoning, and for extensive con-
tributions to AAAI, including educating the broader AI community
through AAAI doctoral consortia and video competitions. Aha pre-
sented his award lecture, “Goal Reasoning: Emerging Applications, a
Foundation, and Prospects,” at the Innovative Applications of Artifi-
cial Intelligence Conference in San Francisco.

David W. Aha (UCI 1990) is a member of NRL’s Navy Center for
Applied Research on AI. His group conducts basic and applied
research on intelligent agents, ML, case-based reasoning, and related
topics; their current projects concern goal reasoning or deep learning.
He has mentored 12 postdocs, served on 20 PhD committees, was a
AAAI Councilor, cocreated the AAAI AI Video Competition, and cre-
ated the UCI Repository for ML Databases. Aha has co-organized mor
than 30 events (including AAAI-17 DC, ICCBR-17, IJCAI-17 Workshop
on XAI), serves on several PCs, and led or leads the evaluation team
for four DARPA or ONR Programs.



Talib Al-Hinai, Mirko Kovac

Best Student Video
HEALER: Using AI to Raise HIV Aware-
ness among Homeless Youth. Amulya
Yadav, Eric Rice, Robin Petering, Jaih
Craddock, Bryan Wilder, Milind Tambe

Most Entertaining Video
How to Cut Cake Fairly. Jack Fisher,
Marcus Strom

The organizers would like to thank
these and all the authors of the nomi-
nated videos for their participation in
the 2017 AI Video Competition. Other
nominated videos included the follow-
ing:

Top Drone. Philip Moore, Michael Floyd,
Justin Karneeb, David Aha

Using Constraint Programming on a
Single-Arm ABB Robot. Mathieu Collet,
Arnaud Gotlieb, Inger Karoline

Active Video Summarization: Cus-
tomized Summaries via On-line Inter-
action with the User. Ana Garcia del
Molino, Xavier Boix, Joaquim Bellmunt

Congratulations to all!

ICWSM-17 Registration
Now Available!

The Eleventh International AAAI Con-
ference on Web and Social Media will
be held at the Hyatt Regency Montreal
in Montreal, Canada from May 15–18,
2017. This interdisciplinary conference
is a forum for researchers in computer
science and social science to come
together to share knowledge, discuss
ideas, exchange information, and learn
about cutting-edge research in diverse
fields with the common theme of
online social media. This overall theme
includes research in new perspectives
in social theories, as well as computa-
tional algorithms for analyzing social
media. ICWSM is a singularly fitting
venue for research that blends social
science and computational approaches
to answer important and challenging
questions about human social behav-
ior through social media while advanc-
ing computational tools for vast and
unstructured data.

ICWSM-17 will include a lively pro-
gram of technical talks and posters,
invited presentations, and keynote
talks by Laurie Faith Cranor (Carnegie
Mellon University), Hilary Mason

(New York University), and Matthew J.
Salganik (Princeton University). The
ICWSM Workshop program will con-
tinue in 2017 with 4 half-day and four
full-day workshops, and the Tutorial
Program, comprising 2 half-day and 2
full-day tutorials, will run in parallel.
Both will be held on the first day of the
conference, May 15. For complete
details about these programs, please
see icwsm.org/2017/.

Registration information is available
at the ICWSM-17 website (www.
icwsm.org/2017/attending/registra-
tion). The early registration deadline is
March 31, and the late registration
deadline is April 21. For full details
about the conference program, please
visit the ICWSM-17 website (icwsm.
org) or write to icwsm17@aaai.org. 

Interesting in Hosting
ICWSM-19?

AAAI, in cooperation with the ICWSM
Steering Committee, is currently seek-
ing proposals for a host city for the
Thirteenth International AAAI Confer-
ence on Web and Social Media
(ICWSM-19). The conference is typi-
cally held Monday - Thursday during
the timeframe of mid-May through
mid-June. Final selection of a site will
be made by August 2017. For more
information about proposal require-
ments, please write to icwsm19@aaai.
org.
Note: ICWSM-18 will be held at Stan-

ford University in Palo Alto. 
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AAAI/EAAI 2017 Outstanding Educator Award
The AAAI/EAAI Outstanding Educator was established
in 2016 to recognize a person (or group of people) who
has (have) made major contributions to AI education
that provide long-lasting benefits to the AI communi-
ty. Examples might include innovating teaching meth-
ods, providing service to the AI education community,

generating pedagogical resources, designing curricula, and educating
students outside of higher education venues (or the general public)
about AI. AAAI is pleased to announce the 2017 award is being given
to Sebastian Thrun (Udacity, KittyHawk, Stanford University, Georgia
Tech) for his pioneering efforts on the creation of high-quality, wide-
ly available, and affordable online courses, including seminal artificial
intelligence courses, and for demonstrating the excitement of AI
research in self-driving cars and navigation. This award is jointly
sponsored by AAAI and the Symposium on Educational Advances in
Artificial Intelligence.

Sebastian Thrun pursues research on robotics, artificial intelligence,
education, and human computer interaction. He founded Google's
self driving car team, after winning the DARPA Grand Challenge.
Together with Peter Norvig, he also developed the very first global
MOOC with 160,000 students enrolled. His company, Udacity, has
educated over 5 million students, and has been valued at more than
one billion dollars. Google Scholar ranks Thrun's publication h-index
#14 worldwide in all of computer science. Thrun also founded Google
X, where he founded Google Glass among many other projects. He
was elected into the National Academy of Engineering and the Ger-
man Academy of Sciences at age 39. Fast Company named Thrun the
fifth most creative person in business, and Foreign Policy touted him
Global Thinker #4. He won numerous awards, including the presti-
gious Max Planck Research Award. 

http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Ficwsm.org%2F2017%2F
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http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Fwww.icwsm.org%2F2017%2Fattending%2Fregistration
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Ficwsm.org
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=115&exitLink=http%3A%2F%2Ficwsm.org
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=115&exitLink=mailto%3Aicwsm19%40aaai.org
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place for academic AI researchers and
professional software developers to dis-
cuss the latest advances in entertain-
ment-focused AI. The conference has a
long-standing history of featuring
research on artificial intelligence in
computer games. We also invite
researchers, developers, and digital
artists to share ideas on topics at the
intersection of all forms of entertain-
ment and artificial intelligence broad-
ly. AIIDE-17 will feature invited speak-

AIIDE-17 to be Held in
Snowbird, Utah

Please join us for AIIDE-17, to be held
October 5-9, 2017 at the Cliff Lodge at
Snowbird in Little Cottonwood
Canyon, Utah, USA. AIIDE-17 is the
next in an annual series of conferences
showcasing interdisciplinary research
on modeling, developing, and evaluat-
ing intelligent systems in entertain-
ment. AIIDE-17 provides a meeting

ers, paper sessions, workshops, tutori-
als, playable experiences, panels,
posters, the Starcraft AI Competition,
and a doctoral consortium. 

This year, the AIIDE conference will
feature a special topic of “Beyond
Games.” In addition to general topics
of interest in game AI, we welcome
submissions featuring innovative
forms of interactive digital entertain-
ment, including but not limited to
human-robot interaction, computer
music, generative art, physical com-
puting, procedural animation, and dig-
ital improvisation. The special topic
will also connect to keynote speakers,
panels, paper sessions, and other
aspects of the conference program.

Submissions for all programs are due
May 25, 2017. For more information,
please visit www.aiide.org, or write to
aiide17@aaai.org.

Join Us in Quebec City 
for HCOMP-17

The Fifth AAAI Conference on Human
Computation and Crowdsourcing will
be held October 24 – 26, 2017 at the
Hilton Regency Quebec in Quebec
City, Canada. HCOMP-17 will be colo-
cated with the User Interface Software
and Technology (UIST). HCOMP is
the premier venue for disseminating
the latest research findings on crowd-
sourcing and human computation.
While artificial intelligence (AI) and
human-computer interaction (HCI)
represent traditional mainstays of the
conference, HCOMP believes strongly
in inviting, fostering, and promoting
broad, interdisciplinary research. This
field is particularly unique in the
diversity of disciplines it draws upon,
and contributes to, ranging from
human-centered qualitative studies
and HCI design, to computer science
and artificial intelligence, economics
and the social sciences, all the way to
digital humanities, policy, and ethics.
We promote the exchange of
advances in human computation and
crowdsourcing not only among
researchers, but also engineers and
practitioners, to encourage dialogue
across disciplines and communities of
practice.

Submissions are due May 4, 2017.
For more information, please visit
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Join Us in New Orleans 
for AAAI-18!

The Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI-18) and the Thirtieth Conference on Innovative Applica-
tions of Artificial Intelligence (IAAI-18), will be held in New
Orleans, Louisiana, USA, February 4-10. The technical confer-
ence will continue its 3-1/2 day schedule, followed by the work-
shop and tutorial programs. AAAI-17 will arrive in New Orleans
just prior to Mardi Gras and festivities will already be underway.
Enjoy legendary jazz music, the French Quarter filled with live-
ly clubs and restaurants, world-class museums, and signature
architecture. New Orleans’ multicultural and diverse communi-
ties will make your choices and and experience in the Big Easy
unique. The 2017 Call for Papers will be available soon. 

Please join us in 2017 in New Orleans for a memorable AAAI!

www.aaai.org/aaai18

Courtesy, iStock

http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=116&exitLink=http%3A%2F%2Fwww.aiide.org
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=116&exitLink=mailto%3Aaiide17%40aaai.org
http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=116&exitLink=http%3A%2F%2Fwww.aaai.org%2Faaai18


humancomputation.com, or write to
hcomp17@aaai.org.

2017 Fall 
Symposium Series

Mark Your Calendars! The 2017 AAAI
Fall Symposium Series will be held
Thursday through Saturday, November
9-11 2017, at the Westin Arlington
Gateway in Arlington, Virginia, adja-
cent to Washington, DC. Proposals are
due April 21, and accepted symposia
will be announced in late May. Sub-
missions will be due July 21, 2017. For
more information, please see the 2017
Fall Symposium Series website (www.
aaai.org/Symposia/Fall/fss17.php). 

AAAI Executive 
Council Elections

Please watch your mailboxes for an
announcement of the 2017 AAAI Elec-
tion. The link to the electronic version
of the annual AAAI ballot will be mailed
to all regular individual AAAI members
in the spring. This year, the member-
ship will vote for four new councilors,
who will each serve three-year terms.
The online voting system is expected to
close on June 16. Please note that the
ballot will be available via the online
system only. If you have not provided
AAAI with an up-to-date email address,
please do so immediately by writing to
membership17@aaai. org.

Member News: 
In Memoriam

Adele Howe
AAAI deeply regrets to report the sad
news of Adele Howe’s passing on Janu-
ary 20, 2017. Howe, a AAAI Fellow, was
a professor of computer science at Col-
orado State University (CSU), and was
named a Professor Laureate in the Col-
lege of Natural Sciences at CSU in
2010. She attended The University of
Pennsylvania and in 1983 received her
B.S.E. in computer science and engi-
neering. She then joined ITT’s Artificial
Intelligence Research Group. She com-
pleted her Ph.D. in Computer Science
at the University of Massachusetts in
1992. While at the University of Mas-

sachusetts she did pioneering work on
autonomous agents operating in com-
plex environments, and simulated fire-
fighting in Yellowstone National Park.

Howe’s later research focused on
autonomous agents, planning systems,
human-centered computing, as well as
search and combinatorial optimiza-
tion. One of her many projects was
helping to develop the first meta-
crawler search engine for navigating
the web (before there was Google). In
2000 and 2001 she served the United
States as a member of the U.S. Defense
Science Study Group, a selective and
small group of academics charged with
reviewing all branches of the military,
and anticipating how changes spurred
by advanced research will impact the
military. She also helped to develop a
satellite communication scheduling
system for the U.S. Air Force.

In 2015, Howe was named a Fellow
of AAAI, and was honored for her sig-
nificant contributions to the theory,
practice and evaluation of automated
planning, scheduling and other AI
technologies, as well as service to the
AI community. In 2016, she was the
inaugural recipient of the ICAPS (Inter-
national Conference on Automated
Planning and Scheduling) Distin-
guished Service Award.

Howe was a longtime volunteer for
AAAI in a host of roles, and most
recently served as the cochair for the
Senior Member track at AAAI-17. Her
commitment to fostering research in
artificial intelligence and her passion
for building diversity in the field of
computer science and artificial intelli-
gence will be sorely missed. 

Ranan Banerji 
AAAI also reports the passing of AAAI
Fellow Ranan B. Banerji, professor of
math and computer science at St.
Joseph's University in New Jersey. Born
in Kolkata, Banerji earned his under-
graduate degree in physics at Patna
University in Bihar, India, in 1947, and
his doctorate in physics at the Univer-
sity of Calcutta in 1956. Before joining
St. Joseph’s, Ranan Banerji also held
professorships at Case Western Univer-
sity in Ohio and Temple University in
Philadelphia. At the time of his elec-
tion as a AAAI Fellow, AAAI honored
Banerji for his pioneering and contin-

uing work in the formal foundations of
problem-solving, game-playing and
machine learning. He conducted sem-
inal early work in search, game play-
ing, and game trees, and wrote widely,
including five books, on artificial intel-
ligence.

AAAI Executive Council
Meeting Minutes

The 2016 AAAI Executive Council
meeting was held November 28, 2016,
via teleconference. 
Attending: Subbarao Kambhampati,

Tom Dietterich, Yolanda Gil, Ted Sena-
tor, Sonia Chernova, Vincent Conitzer,
Boi Faltings, Steve Smith, Charles
Isbell, Diane Litman, Jennifer Neville,
Blai Bonet, Michela Milano, David
Smith, David Leake, Ashok Goel, Carol
Hamilton.
Not Attending: Mausam, Kiri

Wagstaff, Qiang Yang.
Rao Kambhampati brought the

meeting to order at 9:00 AM and
thanked everyone for joining. He
reviewed the documents in Google and
Blue Jeans. In addition, he gave an
update on recent activities in which he
has been involved.

Presidential Issues
Kambhampati and Carol Hamilton ini-
tiated the AAAI Affiliates program,
whereby all individuals who have
served on AAAI conference program
committees or attended AAAI confer-
ences as nonmembers are automatical-
ly signed up as AAAI Affiliates. Affili-
ates do not have member privileges,
but do receive the AI Alert and other
announcements about AAAI activities.
Currently, there are 3,541 affiliates, so
there are as many people helping with
and attending AAAI programs as there
are members.

Kambhampati has also been work-
ing with the China Computer Federa-
tion to work out a Memorandum of
Understanding that will be of mutual
benefit to AAAI members and to the
Chinese AI community, including
mutual advertising and other coopera-
tive efforts. Kambhampati sent a con-
gratulatory note to the CCF upon their
40th anniversary. Tom Dietterich also
spoke about AAAI in a recent meeting
in Beijing.
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er costs for the main conference. In
addition, there will be a rehaul of the
AAAI website, resulting in a one-time
expense for the Association. Kamb-
hampati added that he would like the
association take on further commit-
ments, given the current large surge in
interest in AI, and would like to use the
full 5 percent if opportunities arise to
do so. 

After some further discussion, Tom
Dietterich moved to approve the budg-
et, Senator seconded the motion, and
the budget was approved unanimous-
ly. 

In further financial news, Senator
noted that he had circulated the tax
return to the Council. This is a good
practice required by our auditor to
retain transparency in the process.
Finally, Senator announced that he
will be transitioning out of the Secre-
tary-Treasurer position at the end of
2017, and in conjunction with other
members of the AAAI Executive Com-
mittee, has worked out transition plan.
David Smith, who has served on the
Finance Committee for several years,
will take over as Secretary-Treasurer
upon his retirement from NASA, and
noted that Smith will attend this and
all future meetings during the transi-
tion period. Kambhampati thanked
Senator for his 14 years of service as
Secretary-Treasurer, as well as all his
other service for the association.

Membership Committee
Kambhampati announced that Blai
Bonet will be taking over as the Mem-
bership Committee chair. Bonet noted
that he will be working with the com-
mittee on several issues, including how
to develop the affiliates program. The
committee will also be reviewing the
current list of people who have applied
for the Distinguished Speaker program,
and will report on this at the February
meeting. It is anticipated that a budget
will have to be established to pay for
some travel for the speakers. Kamb-
hampati noted that we need to reach
out to industry members more effec-
tively, as several people have men-
tioned to him that they were not sure
if AAAI is open to them.

Conference Committee
Carol Hamilton reviewed the major

Kambhampati, representing AAAI,
will serve on the advisory board of the
newly formed Partnership in AI,
recently established to study and for-
mulate best practices on AI technolo-
gies, to advance the public’s under-
standing of AI, and to serve as an open
platform for discussion and engage-
ment about AI and its influences on
people and society by drawers. He will
join other industry leaders from Apple,
Amazon, Facebook, Google, Deep-
Mind, IBM, and Microsoft, as well as
representatives from UC Berkeley, the
ACLU, the MacArthur Foundation, and
the Peterson Institute of International
Economics. The first physical meeting
will be February 3 in San Francisco.

Kambhampati is also investigating
the possibility of a joint conference
with ACM on AI ethics and will be fol-
lowing up on this with the Ethics
Committee.

The AAAI office had to migrate their
website quite unexpectedly in the past
few weeks, and Kambhampati reported
that the migration had been complet-
ed successfully, just in time for the sub-
mission of close to 800 AAAI-17 pro-
ceedings papers.

Finance Committee
Ted Senator reviewed the budget
approval process for the upcoming
year. The budget is officially approved
by the Council prior to the beginning
of the next fiscal year (the calendar
year). Most of the work is done by the
staff and most of the data is based on
historical trends during recent years.
However, where known, the unique
costs associated with chosen venues
for programs are incorporated into the
budget. If new programs or activities
have been requested by committees,
those are also incorporated into the
budget. Senator drew the Council
members’ attention to the line in the
program that explains how much of
the operating reserve will need to be
used to support the current projec-
tions. He noted that as long as this
number is in the 3-5 percent range, it is
an acceptable amount. A full set of
budget guidelines was circulated to the
Council prior to the meeting. 

Senator also noted that the projec-
tion for 2016 is a surplus. 2017 will be
a more expensive year due to the high-

differences between the 2016 confer-
ence and the 2017 conference. The
conference technical program will be
significantly bigger with close to 150
additional technical papers accepted
for presentation, including the main
track, special tracks, senior member,
and demo tracks. Other activities will
remain similar to 2016, although the
robotics program will not be held. The
other big difference will be budgetary,
as San Francisco will be significantly
more expensive than Phoenix. This
was reviewed during the budget dis-
cussions. In addition, Yolanda Gil not-
ed that plans were underway for an
Industry Day event, comprising a
series of accessible talks geared toward
industry. Possible days for this event
will be Sunday or Friday following the
main conference. Gil also mentioned
that it would be a missed opportunity
to not reach out to industry, given that
AAAI-17 is in the Bay Area. Gil has
agreed to spearhead this, but is seeking
volunteers to help design the best pro-
gram and promotion strategy. 

The committee discussed other pro-
grams or initiatives that would be of
interest to industry, including the AI
Job Fair, also scheduled for Sunday,
IAAI-17, and highlighting workshops
or tutorials that might be accessible.
All agreed that good promotion will be
important to reach beyond the normal
attendees at AAAI. Further discussion
revolved around possible fees for the
event, the targeted audience, and the
scope of the event. Gil said she would
do some further investigation to clari-
fy these issues. Kambhampati would
like to establish a strong connection to
industry and this could be the jumping
board to do so.

Symposium
Carol Hamilton noted that Gita Suk-
thanker will be stepping down as Sym-
posium Chair, and will be replaced by
Christopher Geib. The committee is
currently seeking a new cochair, and
may seek a person outside North Amer-
ica. The Council agreed that interna-
tional outreach is very important, and
that the resulting slight increase in
travel expenses was fine.

Government Relations
Steve Smith reported that the commit-
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tee will be responding to an RFI from
the British government, and had earli-
er put in a response to the OSTP about
the challenges and risks of AI. The
committee will be spending some time
reflecting on what they can do during
the new administration.

Publications
David Leake reported that Ashok Goel
took over as editor of the magazine
officially on October 1. Goel noted
that he is just getting familiar with the
full process, and that his workload
associated with the magazine is greater
than he thought it would be. He would
like to spend some additional time dur-
ing this familiarization period with the
current publishing structure, including
the web and digital versions. He will
then tackle the electronic edition. He
reviewed the plans for the upcoming
issues, and noted that there is the pos-
sibility of an AI Magazine-sponsored
panel at AAAI-17, which will be con-
verted to an article in a future issue. He
hopes to start a dedicated column for
past presidents of AAAI, as well as AAAI
Fellows. Leake thanked Goel on behalf
of the Publications Committee for all
his work and the energy that he is put-
ting into the magazine.

International
Rao Kambhampati announced that
Qiang Yang will serve as the new chair
for the International Committee. He
noted that Yang has been very helpful
in making connections for AAAI in
China, especially with the recruitment
of program committee members for
AAAI-17. 

Conflict of Interest Policy
Ted Senator reported that he will be
developing a Conflict of Interest policy
statement and agreement for members
of the Executive Council before the
next meeting. He reviewed the three
duties of care briefly, and noted that a
COI policy is highly recommended for
all nonprofits. It is a standard request
from the AAAI auditor.

The IBM Watson AI XPrize
Kambhampati noted that he is on the
steering committee for this event that
challenges teams to attempt their own
Moonshot achievements, demonstrat-

ing AI-human collaboration to address
humanity’s Grand Challenges. Profes-
sional organizations will provide
experts to help teams.

AIHub 
Tom Dietterich reported that he is con-
tinuing to work with Sabine Hauert on
the AI Hub project, a site that will pro-
vide one-stop shopping for AI-related
items. The goal is still to create a coop-
erative effort among 4-5 different
organizations who will each contribute
$15-20K each to support the venture.

Although he requested an initial $5K
to get the project off the ground, it was
determined that Council approval was
not needed for this amount and it will
be considered separately as needed.
Dietterich asked for volunteers to help
with the development of the project,
and will have an update at the Febru-
ary meeting. 

Kambhampati thanked everyone for
coming, wished everyone a happy hol-
iday season, and the meeting
adjourned at 10:45 AM.
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AAAI Gifts Program
It is the generosity and loyalty of our members that enable us to con-
tinue to provide the best possible service to the AI community and pro-
mote and further the science of artificial intelligence by sustaining the
many and varied programs that AAAI provides. AAAI invites all mem-
bers and other interested parties to consider a gift to help support the
dozens of programs that AAAI currently sponsors. For more informa-
tion about the Gift Program, please see write to us at donate17@
aaai.org. 

Support AAAI Open Access
AAAI also thanks you for your ongoing support of the open access ini-
tiative. We count on you to help us deliver the latest information
about artificial intelligence to the scientific community. To enable us
to continue this effort, we invite you to consider an additional gift to
AAAI. For information on how you can contribute to the open access
initiative, please see www.aaai.org and click on “Gifts.”

AAAI is a 501c3 charitable organization. Your contribution 
may be tax deductible.
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The Thirty-Second AAAI Conference
on Artificial Intelligence. AAAI-18
will be held February 4–10 at the
Hilton New Orleans Riverside Hotel,
New Orleans, Louisiana USA.

URL: www.aaai.org/aaai18

Thirtieth Innovative Applications of
Artificial Intelligence Conference.
The IAAI-18 Conference will be held
February 4–10 at the Hilton New
Orleans Riverside Hotel, New Orleans,
Louisiana USA.

URL: www.aaai.org/iaai18.php

Conferences Held by 
AAAI Affiliates

The 16th International Conference
on Autonomous Agents and Multia-
gent Systems. AAMAS 2017 will be
held May 8–12, 2017 in São Paulo,
Brazil.

URL: aamas2017.org

Thirtieth International Florida AI
Research Society Conference.
FLAIRS-2017 will be held May 22–24,
2017 on Marco Island, Florida, USA.

URL: www.flairs-30.info

The 27th International Conference
on Automated Planning and Sched-
uling. ICAPS-17 will be held June 18–
23, 2017 in Pittsburgh, PA USA.

URL: icaps17.icaps-conference.org

Conferences Held in
Cooperation with AAAI

The 16th International Conference
on Artificial Intelligence and Law.
ICAIL 2017 will be held 12-16 June,
2017 in London, UK

URL: nms.kcl.ac.uk/icail2017

Thirtieth International Conference
on Industrial, Engineering, and Oth-
er Applications of Applied Intelli-
gent Systems. IEA/AIE-2017 will be
held June 17–21, 2017 in Arras,
France.

URL: www.ieaaie2017.org

Thirteenth International Confer-
ence on Logic Programming and
Nonmonotonic Reasoning. LPN-
MR’17 will be held July 3-6, 2017 in
Espoo  Finland

URL: http://lpnmr2017.aalto.fi

Thirteenth International Confer-
ence on Intelligent Environments.
IE'17 will be held August 21-25, 2017,
in Seoul, Korea

URL: www.intenv.org/?q=conferences/ie17
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AAAI Sponsored 
Conferences

AAAI Spring Symposium Series. The
AAAI 2017 Spring Symposium Series
will be held March 27–29, 2017, at
Stanford University adjacent to Palo
Alto, CA USA.

URL: www.aaai.org/Symposia/Spring/
sss17.php

Eleventh International AAAI Confer-
ence on Web and Social Media.
ICWSM-17 will be held May 15–18 in
Montréal, Québec, Canada.

URL: www.icwsm.org/2017

The Thirteenth AAAI Conference on
Artificial Intelligence and Interac-
tive Digital Entertainment. The Thir-
teenth Annual AAAI Conference on
Artificial Intelligence and Interactive
Digital Entertainment will be held
October 5 – 9, 2017 at the Cliff Lodge
at Snowbird in Little Cottonwood
Canyon, Utah, USA.

URL: aiide.org

Fifth AAAI Conference on Human
Computation and Crowdsourcing.
The Fifth AAAI Conference on
Human Computation and Crowd-
sourcing will be held October 24 – 26,
2017 at the Hilton Regency Quebec in
Quebec City, Canada.

URL: humancomputation.com

AAAI Fall Symposium Series. The
AAAI 2017 Fall Symposium Series will
be held November 9–11, 2017, in
Arlington, Virginia adjacent to Wash-
ington, DC. USA.

URL: www.aaai.org/Symposia/Fall/
fss17.php

This page includes forthcoming AAAI sponsored conferences,
conferences presented by AAAI Affiliates, and conferences held
in cooperation with AAAI. AI Magazine also maintains a cal-

endar listing that includes nonaffiliated conferences at
www.aaai.org/Magazine/calendar.php.

AAAI Conferences Calendar

Calendar

Visit AAAI on
LinkedIn™

AAAI is on LinkedIn! 
If you are a current member of

AAAI, you can join us! 
We welcome your feedback 

at info17@aaai.org.
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AAAI-18
4 – 10 February — New Orleans, Louisiana, USA

Program Chairs
Sheila McIlraith (University of Toronto)
Kilian Weinberger (Cornell University)

www.aaai.org/aaai18
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Join Us in Montréal, Québec, Canada 
on May 15–18, 2017

I CWSM

www.icwsm.org/2017

The Eleventh International AAAI Conference on 
Web and Social Media  (ICWSM-17)

http://www.aimagazine-digital.org/aimagazine/spring_2017/TrackLink.action?pageName=C4&exitLink=http%3A%2F%2Fwww.icwsm.org%2F2017

	CONTENTS
	INNOVATION APPLICATIONS OF AI ARTICLES
	Introduction: Innovative Applications of Artificial Intelligence 2016
	Building AI Applications: Yesterday, Today, and Tomorrow
	PAWS &madsh; A Deployed Game-Theoretic Application to Combat Poaching
	Deploying nEmesis: Preventing Foodborne Illness by Data Mining Social Media
	Ontology Reengineering: A Case Study from the Automotive Industry
	Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography
	Using Global Constraints to Automate Regression Testing

	ARTICLE
	Shakey: From Conception to History

	COMPETITION REPORT
	The Fifth International Competition on Knowledge Engineering for Planning and Scheduling: Summary and Trends

	AI IN INDUSTRY
	The Evolution of Scheduling Applications and Tools

	WORKSHOP REPORT
	RuleML (Web Rule Symposium) 2016 Report

	DEPARTMENTS
	Editorial: Expository AI Applications
	AAAI News
	AAAI Conferences Calendar




